-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnext50_32x4d.py
223 lines (180 loc) · 7.47 KB
/
resnext50_32x4d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from torchvision import models, transforms
from torch.utils.data import DataLoader, Dataset
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from tqdm import tqdm
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Define the dataset class
class IDCDataset(Dataset):
def __init__(self, image_paths, labels, transform=None):
self.image_paths = image_paths
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
image = Image.open(img_path).convert('RGB')
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# Set the dataset directory
dataset_dir = '/home/data3/Ali/Code/Saina/Brea/Dataset/'
# dataset_dir = '/home/data3/Ali/Code/Saina/Brea/TestData/'
# Collect image paths and labels
logger.info('Collecting image paths and labels...')
image_paths = []
labels = []
for folder_name in os.listdir(dataset_dir):
class_dir_0 = os.path.join(dataset_dir, folder_name, '0')
class_dir_1 = os.path.join(dataset_dir, folder_name, '1')
for img_name in os.listdir(class_dir_0):
image_paths.append(os.path.join(class_dir_0, img_name))
labels.append(0)
for img_name in os.listdir(class_dir_1):
image_paths.append(os.path.join(class_dir_1, img_name))
labels.append(1)
logger.info(f'Collected {len(image_paths)} images.')
# Split the data into training, validation, and testing sets
logger.info('Splitting data into training, validation, and testing sets...')
train_paths, temp_paths, train_labels, temp_labels = train_test_split(image_paths, labels, test_size=0.3, stratify=labels, random_state=42)
val_paths, test_paths, val_labels, test_labels = train_test_split(temp_paths, temp_labels, test_size=0.3333, stratify=temp_labels, random_state=42)
logger.info(f'Training set size: {len(train_paths)}')
logger.info(f'Validation set size: {len(val_paths)}')
logger.info(f'Test set size: {len(test_paths)}')
# Data transforms
data_transforms = {
'train': transforms.Compose([
transforms.Resize((50, 50)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize((50, 50)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize((50, 50)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# Create datasets
logger.info('Creating datasets...')
train_dataset = IDCDataset(train_paths, train_labels, transform=data_transforms['train'])
val_dataset = IDCDataset(val_paths, val_labels, transform=data_transforms['val'])
test_dataset = IDCDataset(test_paths, test_labels, transform=data_transforms['test'])
# Create dataloaders
logger.info('Creating dataloaders...')
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Load the pretrained ResNeXt-50 model
logger.info('Loading pretrained ResNeXt-50 model...')
model = models.resnext50_32x4d(pretrained=True)
# Modify the final layer for binary classification
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 1)
# Move the model to GPU if available
# device = torch.device("cuda:0")
device = torch.device("cpu")
model = model.to(device)
# Loss function and optimizer
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training and evaluation
num_epochs = 10
best_model_wts = None
best_loss = float('inf')
train_acc_history, val_acc_history = [], []
train_loss_history, val_loss_history = [], []
logger.info('Starting training...')
for epoch in range(num_epochs):
logger.info(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
dataloader = train_loader
else:
model.eval() # Set model to evaluate mode
dataloader = val_loader
running_loss = 0.0
running_corrects = 0
# Iterate over data
for inputs, labels in tqdm(dataloader):
inputs = inputs.to(device)
labels = labels.to(device).float().unsqueeze(1)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
preds = torch.sigmoid(outputs) > 0.5
# Backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
if phase == 'train':
train_acc_history.append(epoch_acc)
train_loss_history.append(epoch_loss)
else:
val_acc_history.append(epoch_acc)
val_loss_history.append(epoch_loss)
# Deep copy the model
if epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = model.state_dict()
logger.info(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
logger.info('Training complete')
# Load best model weights
model.load_state_dict(best_model_wts)
# Evaluate on test set
logger.info('Evaluating on test set...')
model.eval()
all_preds = []
all_labels = []
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device).float().unsqueeze(1)
outputs = model(inputs)
preds = torch.sigmoid(outputs) > 0.5
all_preds.append(preds.to(device).numpy())
all_labels.append(labels.to(device).numpy())
all_preds = np.concatenate(all_preds)
all_labels = np.concatenate(all_labels)
logger.info('Generating classification report...')
print(classification_report(all_labels, all_preds, target_names=['0', '1']))
# Plot Accuracy and Loss
logger.info('Plotting accuracy and loss...')
plt.figure(figsize=(14, 5))
plt.subplot(1, 2, 1)
plt.plot(train_acc_history, label='Training accuracy')
plt.plot(val_acc_history, label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(train_loss_history, label='Training loss')
plt.plot(val_loss_history, label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.savefig('/home/data3/Ali/Code/Saina/Brea/OutPut/figure3.png')