-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
237 lines (217 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.nn import NLLLoss, BCELoss, BCEWithLogitsLoss, CrossEntropyLoss
from torch.optim import Adam, SGD
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.functional import softmax
from sklearn.metrics import confusion_matrix
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from torchinfo import summary
from data_utils import load_data
from scipy.interpolate import splev, splrep
import pickle
from model import ConvNet, ConvNetMultiHead
from Dataset import OSASUDDataset, ApneaECGDataset
DATA_FILE_NAME = ['normal_segments_sub.pkl', 'disease_segments_sub.pkl']
DATA_DIR = 'data'
MODEL_SAVE_DIR = 'trained_models'
OUTPUT_DIR = 'output'
BATCH_SIZE = 256
LR = 0.0003
N_EPOCHS = 250
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
CLASSIFICATION = 1
ir = 3 # interpolate interval
before = 2
after = 2
# normalize
scaler = lambda arr: (arr - np.min(arr)) / (np.max(arr) - np.min(arr))
def plot(train_losses, train_acc, test_losses, test_acc, label):
fig, axs = plt.subplots(1, 2, figsize=(20, 10))
axs[0].plot(test_losses, label='val loss')
axs[0].plot(train_losses, label='train loss')
axs[0].set_title("Loss")
axs[1].plot(test_acc, label='val accuracy')
axs[1].plot(train_acc, label='train accuracy')
axs[1].set_title("Accuracy")
plt.legend()
plt.savefig(f'{label}.png')
plt.show()
def train(model, loader, loss_function, optimizer, scheduler):
model.train()
pbar = tqdm(loader)
running_loss = 0.0
correct = 0
processed = 0
for batch_idx, (data, target) in enumerate(pbar):
data, target = data.to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
y_pred = model(data)
loss = loss_function(y_pred, target)
running_loss += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
y_pred_proba = softmax(y_pred, dim=1)
pred = y_pred_proba.argmax(dim=1, keepdim=True) # get the index of the max log-probability
targets = torch.argmax(target, dim=1, keepdim=True)
# correct += pred.eq(target.view_as(pred)).sum().item()
correct += (pred == targets).sum().item()
processed += len(data)
pbar.set_description(
desc=f'Loss={running_loss} Batch_id={batch_idx} Accuracy={100 * correct / processed:0.2f}')
train_loss = running_loss / len(loader.dataset)
train_accuracy = 100 * correct / processed
return train_loss, train_accuracy
def test(model, loader, loss_function):
model.eval()
pbar = tqdm(loader)
running_loss = 0.0
correct = 0
processed = 0
predictions = []
targets_list = []
for batch_idx, (data, target) in enumerate(pbar):
data, target = data.to(DEVICE), target.to(DEVICE)
y_pred = model(data)
loss = loss_function(y_pred, target)
running_loss += loss.item()
# pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability
y_pred_proba = softmax(y_pred, dim=1)
pred = y_pred_proba.argmax(dim=1, keepdim=True) # get the index of the max log-probability
targets = torch.argmax(target, dim=1, keepdim=True)
pred_numpy = pred.detach().cpu().numpy()
predictions += pred_numpy.tolist()
target_numpy = targets.detach().cpu().numpy()
targets_list += target_numpy.tolist()
# correct += pred.eq(target.view_as(pred)).sum().item()
correct += (pred == targets).sum().item()
processed += len(data)
pbar.set_description(desc=f'Loss={running_loss} Batch_id={batch_idx} Accuracy={100 * correct / processed:0.2f}')
test_loss = running_loss / processed
test_accuracy = 100 * correct / processed
conf_matrix = confusion_matrix(targets_list, predictions)
print(conf_matrix)
return test_loss, test_accuracy
def load_data_ecg():
tm = np.arange(0, (before + 1 + after) * 60, step=1 / float(ir))
with open(os.path.join('D:\EMBS_Student_Mentoring\Sleep-apnea-detection-through-a-modified-LeNet-5-CNN\dataset', "apnea-ecg.pkl"), 'rb') as f: # read preprocessing result
apnea_ecg = pickle.load(f)
x_train = []
o_train, y_train = apnea_ecg["o_train"], apnea_ecg["y_train"]
groups_train = apnea_ecg["groups_train"]
for i in range(len(o_train)):
(rri_tm, rri_signal), (ampl_tm, ampl_siganl) = o_train[i]
# Curve interpolation
rri_interp_signal = splev(tm, splrep(rri_tm, scaler(rri_signal), k=3), ext=1)
ampl_interp_signal = splev(tm, splrep(ampl_tm, scaler(ampl_siganl), k=3), ext=1)
x_train.append([rri_interp_signal, ampl_interp_signal])
x_train = np.array(x_train, dtype="float32").transpose((0, 2, 1)) # convert to numpy format
y_train = np.array(y_train, dtype="float32")
x_test = []
o_test, y_test = apnea_ecg["o_test"], apnea_ecg["y_test"]
groups_test = apnea_ecg["groups_test"]
for i in range(len(o_test)):
(rri_tm, rri_signal), (ampl_tm, ampl_siganl) = o_test[i]
# Curve interpolation
rri_interp_signal = splev(tm, splrep(rri_tm, scaler(rri_signal), k=3), ext=1)
ampl_interp_signal = splev(tm, splrep(ampl_tm, scaler(ampl_siganl), k=3), ext=1)
x_test.append([rri_interp_signal, ampl_interp_signal])
x_test = np.array(x_test, dtype="float32").transpose((0, 2, 1))
y_test = np.array(y_test, dtype="float32")
return x_train, y_train, groups_train, x_test, y_test, groups_test
if __name__ == '__main__':
# classification: 0 = Binary, 1 = Multiclass
x_train, y_train, x_test, y_test = load_data(DATA_FILE_NAME, classification=CLASSIFICATION)
# x_train, y_train, groups_train, x_test, y_test, groups_test = load_data_ecg()
# ohe = OneHotEncoder(sparse_output=False)
# y_train_categorical = ohe.fit_transform(y_train.reshape(-1, 1))
# y_test_categorical = ohe.fit_transform(y_test.reshape(-1, 1))
# idx = np.random.choice(np.arange(len(x_train)), 100000, replace=False)
# x_train_sample = x_train[idx]
# y_train_sample = y_train[idx]
#
# idx_test = np.random.choice(np.arange(len(x_test)), 20000, replace=False)
# x_test_sample = x_test[idx_test]
# y_test_sample = y_test[idx_test]
# rfc = RandomForestClassifier(n_estimators=1000, criterion='entropy', n_jobs=6)
# rfc.fit(x_train.reshape((-1, 5 * 600)), y_train)
# rfc_preds = rfc.predict(x_test.reshape((-1, 5 * 600)))
# accuracy = accuracy_score(y_test, rfc_preds)
# print("Random Forest Accuracy:", accuracy)
# if np.isnan(x_train).any() or np.isnan(x_test).any():
# print("NaN in input")
# exit(1)
# train_dataset = OSASUDDataset(x_train_sample, y_train_sample)
train_dataset = OSASUDDataset(x_train, y_train)
# train_dataset = OSASUDDataset(x_train, y_train_categorical)
# train_dataset = ApneaECGDataset(x_train, y_train_categorical)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
# test_dataset = OSASUDDataset(x_test_sample, y_test_sample)
test_dataset = OSASUDDataset(x_test, y_test)
# test_dataset = OSASUDDataset(x_test, y_test_categorical)
# test_dataset = ApneaECGDataset(x_test, y_test_categorical)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE)
# num_classes = len(np.unique(y_train))
num_classes = 2 if CLASSIFICATION == 0 else 5
print("Number of classes:", num_classes)
sample_data, sample_target = next(iter(train_loader))
print(sample_data.size())
model1 = ConvNet((sample_data.size()[0], sample_data.size()[1], sample_data.size()[2]), num_classes=num_classes)
model2 = ConvNetMultiHead((sample_data.size()[0], sample_data.size()[1], sample_data.size()[2]), num_classes=num_classes)
model1.to(DEVICE)
model2.to(DEVICE)
if num_classes > 2:
# Multi Class classification
loss_function = CrossEntropyLoss()
print("Loss Function: Cross Entropy Loss")
else:
# Binary Classification
loss_function = CrossEntropyLoss()
print("Loss Function: Cross Entropy Loss")
optimizer1 = Adam(model1.parameters(), lr=LR)
scheduler1 = MultiStepLR(optimizer1, milestones=[70, 120, 170], gamma=0.1)
optimizer2 = Adam(model2.parameters(), lr=LR)
scheduler2 = MultiStepLR(optimizer2, milestones=[70, 120, 170], gamma=0.1)
# optimizer = SGD(model.parameters(), lr=LR)
input_size = (sample_data.size()[0], sample_data.size()[1], sample_data.size()[2])
# summary(model, input_size=input_size)
epoch_train_acc = []
epoch_train_loss = []
epoch_valid_acc = []
epoch_valid_loss = []
min_val_loss = 99999
for epoch in range(N_EPOCHS):
print("\nEPOCH: %s" % epoch)
train_loss, train_acc = train(model1, train_loader, loss_function, optimizer1, scheduler1)
test_loss, test_acc = test(model1, test_loader, loss_function)
if test_loss < min_val_loss:
min_val_loss = test_loss
print("Validation Loss decreased, saving model")
torch.save(model1.state_dict(), os.path.join(MODEL_SAVE_DIR, 'best_model_multi_convnet.pth'))
epoch_train_loss.append(train_loss)
epoch_train_acc.append(train_acc)
epoch_valid_acc.append(test_acc)
epoch_valid_loss.append(test_loss)
plot(epoch_train_loss, epoch_train_acc, epoch_valid_loss, epoch_valid_acc,
f'Loss & Accuracy')
for epoch in range(N_EPOCHS):
print("\nEPOCH: %s" % epoch)
train_loss, train_acc = train(model2, train_loader, loss_function, optimizer2, scheduler2)
test_loss, test_acc = test(model2, test_loader, loss_function)
if test_loss < min_val_loss:
min_val_loss = test_loss
print("Validation Loss decreased, saving model")
torch.save(model2.state_dict(), os.path.join(MODEL_SAVE_DIR, 'best_model_multi_multi-head-conv.pth'))
epoch_train_loss.append(train_loss)
epoch_train_acc.append(train_acc)
epoch_valid_acc.append(test_acc)
epoch_valid_loss.append(test_loss)
plot(epoch_train_loss, epoch_train_acc, epoch_valid_loss, epoch_valid_acc,
f'Loss & Accuracy')