-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamp_predictor_pytorch.py
241 lines (222 loc) · 11.3 KB
/
amp_predictor_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (C) 2018 Anvita Gupta
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License, version 3,
# as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import random, os, h5py, math, time, glob
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
import torch.nn.functional as F
import sklearn
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import OneHotEncoder
from utils.utils import *
from utils.bio_utils import *
from utils.lang_utils import *
class GRUClassifier(nn.Module):
def __init__(self, vocab_size, batch_size, hidden_dim):
super(GRUClassifier, self).__init__()
self.hidden = hidden_dim
self.embedding = nn.Embedding(vocab_size, hidden_dim)
self.gru = nn.GRU(hidden_dim, hidden_dim, bidirectional=False, num_layers=2, dropout=0.3)
self.linear = nn.Linear(hidden_dim, 1) # input dim is 64*2 because its bidirectional
self.batch_size = batch_size
self.use_cuda = True if torch.cuda.is_available() else False
def forward(self, x, h):
x = self.embedding(x)
x, h = self.gru(x, h)
x = F.sigmoid(self.linear(x[-1])) # sigmoid output for binary classification
return x, h
def init_hidden(self):
if self.use_cuda:
return Variable(torch.randn(2, self.batch_size, self.hidden)).cuda()
return Variable(torch.randn(2, self.batch_size, self.hidden))
def indexes_from_sentence(lang, sentence):
return [lang.token2index[t] for t in sentence]
class ACPClassifier():
def __init__(self, hidden_dim=128, batch_size=64, learning_rate=0.001, epochs=50,
dataset='./data/AMP_dataset.fa', run_name='class_pytorch_drop_03'):
self.hidden_dim = hidden_dim
self.batch_size = batch_size
self.n_epochs = epochs
self.learning_rate = learning_rate
self.use_gpu = True if torch.cuda.is_available() else False
self.pairs = self.load_data(dataset)
self.train_pairs, self.val_pairs, self.test_pairs = splitTrainTestValLists(self.pairs, 0.6, 0.2)
print( "{} Training Pairs; {} Validation Pairs".format(len(self.pairs), len(self.val_pairs)))
self.build_model()
self.checkpoint_dir = './checkpoint_FBGAN_classifier/' + run_name + '/'
if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir)
self.init_epoch = self.load_model()
def load_data(self, dataset):
pairs = []
self.lang = Lang("dna")
with open(dataset, 'r') as f:
for line in f:
seq, label = line.split()
self.lang.index_string(seq)
pairs += [(seq, int(label))]
np.random.shuffle(pairs)
return pairs
def build_model(self):
self.rnn = GRUClassifier(self.lang.n_tokens, self.batch_size, hidden_dim=128)
if self.use_gpu:
self.rnn.cuda()
self.optimizer = optim.Adam(self.rnn.parameters(), lr=self.learning_rate)
self.criterion = nn.BCELoss()
def save_model(self, epoch):
torch.save(self.rnn.state_dict(), self.checkpoint_dir + "model_weights_{}.pth".format(epoch))
def load_model(self):
'''
Load model parameters from most recent epoch
'''
list_model = glob.glob(self.checkpoint_dir + "model*.pth")
if len(list_model) == 0:
print("[*] Checkpoint not found! Starting from scratch.")
return 1 #file is not there
chk_file = max(list_model, key=os.path.getctime)
epoch_found = int( (chk_file.split('_')[-1]).split('.')[0])
print("[*] Checkpoint {} found!".format(epoch_found))
self.rnn.load_state_dict(torch.load(chk_file))
return epoch_found
def train_model(self):
num_batches = int(len(self.train_pairs)/self.batch_size)
start = time.time()
print_loss_total, total_acc, total_overall = 0, 0, 0
min_val_loss = 10000
print( "Starting training...")
train_loss_f = open(self.checkpoint_dir + "losses.txt",'a+')
val_loss_f = open(self.checkpoint_dir + "val_losses.txt",'a+')
counter = 0
h = self.rnn.init_hidden()
for epoch in range(self.init_epoch,self.n_epochs+1):
for batch in range(num_batches):
counter += 1
input_batches, input_lengths, target = self.random_batch(self.train_pairs)
target = Variable(target).type(torch.FloatTensor)
target = target.view(self.batch_size, 1)
if self.use_gpu: target = target.cuda()
h.detach_()
y_pred, h = self.rnn(input_batches, h)
self.optimizer.zero_grad()
loss = self.criterion(y_pred, target)
loss.backward()
self.optimizer.step()
trn_preds = torch.round(y_pred.data)
correct = torch.sum(trn_preds == target.data)
print_loss_total += loss.item() #loss.data[0]
total_acc += correct
total_overall += self.batch_size
val_loss, val_acc = self.evaluate_model()
print_summary = '%s (%d %d%%) Train Loss-%.4f Train Acc- %.4f Val Loss- %.4f Val Acc-%.4f'\
% (time_since(start, float(epoch) / self.n_epochs), epoch, float(epoch) / self.n_epochs * 100,
print_loss_total / num_batches, float(total_acc)/total_overall, val_loss, val_acc)
print(print_summary)
train_loss_f.write("Epoch: {} \t Loss: {}\n Accuracy: {}\n".format(epoch, print_loss_total / num_batches, float(total_acc)/total_overall))
val_loss_f.write("Epoch: {} \t Val Loss: {} Val Acc: {}\n".format(epoch, val_loss, val_acc))
if val_loss < min_val_loss:
self.save_model(epoch)
min_val_loss = val_loss
print("Saved model at epoch {}\n".format(epoch))
print_loss_total, total_acc, total_overall = 0, 0, 0
test_loss, test_acc = self.evaluate_model(validation=False)
print("Test Loss:{}, Test Accuracy: {}\n".format(test_loss, test_acc))
def evaluate_model(self, validation=True):
if validation:
pairs = self.val_pairs
else:
pairs = self.test_pairs
print("Test Set...")
self.rnn.train(False)
total_loss = 0
num_batches = int(len(pairs)/self.batch_size)
y_scores_all, y_pred_all = np.zeros((num_batches*self.batch_size,1)), np.zeros((num_batches*self.batch_size,1))
target_all = np.zeros((num_batches*self.batch_size,1))
hid = self.rnn.init_hidden()
for batch in range(num_batches):
start_idx = batch*self.batch_size
input_batches, input_lengths, target = self.sequential_batch(pairs, start_idx)
target = Variable(target).type(torch.FloatTensor)
target = target.view(self.batch_size, 1)
if self.use_gpu: target = target.cuda()
y_pred, hid = self.rnn(input_batches, hid)
loss = self.criterion(y_pred, target)
total_loss += loss.item() #loss.data[0]
y_pred_cpu = y_pred.cpu() # Move y_pred to CPU
y_scores_all[start_idx:(start_idx + self.batch_size)] = y_pred_cpu.data.numpy()
target_all[start_idx:(start_idx + self.batch_size)] = target.cpu().data.numpy()
y_pred_all[start_idx:(start_idx + self.batch_size)] = torch.round(y_pred_cpu.data).numpy()
self.rnn.train(True)
fpr, tpr, thresholds = metrics.roc_curve(target_all, y_scores_all)
auc = metrics.auc(fpr, tpr)
prec = metrics.precision_score(target_all, y_pred_all)
recall = metrics.recall_score(target_all, y_pred_all)
accuracy = metrics.accuracy_score(target_all, y_pred_all)
print("AUC: {}, Precision: {}, Recall: {}".format(auc, prec, recall))
return total_loss/num_batches, accuracy
def predict_model(self, input_seqs):
pos_seqs = []
hid = self.rnn.init_hidden()
num_pred_batches = int(len(input_seqs)/self.batch_size)
all_preds = np.zeros((num_pred_batches*self.batch_size, 1))
for idx in range(num_pred_batches):
batch_seqs = input_seqs[idx*self.batch_size:(idx+1)*self.batch_size]
tokenized_seqs = [indexes_from_sentence(self.lang, s.strip()) for s in batch_seqs]
input_lengths = [len(s) for s in tokenized_seqs]
input_padded = [pad_seq(s, self.lang.PAD_token, max(input_lengths)) for s in tokenized_seqs]
input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
input_var = input_var.cuda() if self.use_gpu else input_var
y_pred, hid = self.rnn(input_var, hid)
print( "Made predictions...")
all_preds[idx*self.batch_size:(idx+1)*self.batch_size,:] = y_pred.data.cpu().numpy()
return all_preds
def sequential_batch(self, pairs, start_idx):
batch_pairs = pairs[start_idx:(start_idx + self.batch_size)]
seqs, labels = zip(*batch_pairs)
input_seqs = [indexes_from_sentence(self.lang, seq) for seq in seqs]
seq_pairs = sorted(zip(input_seqs, labels), key=lambda p: len(p[0]), reverse=True)
input_seqs, labels = zip(*seq_pairs)
input_lengths = [len(s) for s in input_seqs]
input_padded = [pad_seq(s, self.lang.PAD_token, max(input_lengths)) for s in input_seqs]
input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
target = torch.LongTensor(labels)
if self.use_gpu:
input_var = input_var.cuda()
target = target.cuda()
return input_var, input_lengths, target
def random_batch(self, pairs):
input_seqs, labels = [],[]
for i in range(self.batch_size):
seq, label = random.choice(pairs)
input_seqs.append(indexes_from_sentence(self.lang, seq))
labels.append(label)
seq_pairs = sorted(zip(input_seqs, labels), key=lambda p: len(p[0]), reverse=True)
input_seqs, labels = zip(*seq_pairs)
input_lengths = [len(s) for s in input_seqs]
input_padded = [pad_seq(s, self.lang.PAD_token, max(input_lengths)) for s in input_seqs]
input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
target = torch.LongTensor(labels)
if self.use_gpu:
input_var = input_var.cuda()
target = target.cuda()
return input_var, input_lengths, target
def main():
parser = argparse.ArgumentParser(description='RNN Predictor of Antimicrobial Activity of Gene Products')
parser.add_argument("--run_name", default='class_pytorch_drop_03', help="Name for checkpoints")
args = parser.parse_args()
rnn = ACPClassifier(run_name=args.run_name)
rnn.train_model()
if __name__ == '__main__':
main()