-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMPC_map.py
190 lines (154 loc) · 6.96 KB
/
MPC_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.lines import Line2D
import numpy as np
class NEO:
def __init__(self, name, number, epoch,
semimajor_axis, eccentricity,
inclination, long_asc_node,
arg_peri, mean_anom, orbit_type=None):
self.name = name
self.number = number
self.epoch = epoch
self.a = semimajor_axis
self.e = eccentricity
self.i = inclination
self.node = long_asc_node
self.peri = arg_peri
self.M = mean_anom
self.orbit_type = orbit_type
def readJSON(filename):
try:
with open(filename, "r") as file:
data = json.load(file)
return data
except FileNotFoundError:
print("Error: File", filename, "not found!")
except json.JSONDecodeError as e:
print("Error: Failed to decode JSON in", filename, "\n", e)
def generate_orbits(NEOs, poly=1000):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
for n in NEOs:
eccentricity = n.e
argument_perihelion = np.radians(n.peri)
semimajor_axis = n.a # AU
ascending_node = np.radians(n.node)
inclination = np.radians(n.i)
true_anomaly = np.linspace(0, 2 * np.pi, poly)
r = (semimajor_axis * (1 - eccentricity**2)) / (1 + eccentricity * np.cos(true_anomaly))
x = r * np.cos(true_anomaly)
y = r * np.sin(true_anomaly)
z = np.zeros_like(true_anomaly)
x_rot = x * (np.cos(argument_perihelion) * np.cos(ascending_node) - np.sin(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination)) - \
y * (np.sin(argument_perihelion) * np.cos(ascending_node) + np.cos(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination))
y_rot = x * (np.cos(argument_perihelion) * np.sin(ascending_node) + np.sin(argument_perihelion) * np.cos(ascending_node) * np.cos(inclination)) + \
y * (np.cos(argument_perihelion) * np.cos(ascending_node) - np.sin(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination))
z_rot = x * np.sin(argument_perihelion) * np.sin(inclination) + y * np.sin(argument_perihelion) * np.sin(inclination)
color = "k"
if n.orbit_type:
if n.orbit_type == "Atira":
color = "olive"
elif n.orbit_type == "Aten":
color = "cyan"
elif n.orbit_type == "Apollo":
color = "red"
elif n.orbit_type == "Amor":
color = "orange"
elif n.orbit_type == "Object with perihelion distance < 1.665 AU":
color = "purple"
elif n.orbit_type == "Hungaria":
color = "pink"
elif n.orbit_type == "MBA":
color = "gray"
elif n.orbit_type == "Phocaea":
color = "green"
elif n.orbit_type == "Hilda":
color = "brown"
elif n.orbit_type == "Jupiter Trojan":
color = "aquamarine"
elif n.orbit_type == "Distant Object":
color = "navy"
ax.plot(x_rot, y_rot, z_rot, color=color)
# -- plot Earth orbit
eccentricity = 0.0167086
argument_perihelion = np.radians(288.1)
semimajor_axis = 1.0000010178
ascending_node = np.radians(174.9)
inclination = 0
true_anomaly = np.linspace(0, 2 * np.pi, 1000)
r = (semimajor_axis * (1 - eccentricity**2)) / (1 + eccentricity * np.cos(true_anomaly))
x = r * np.cos(true_anomaly)
y = r * np.sin(true_anomaly)
z = np.zeros_like(true_anomaly)
x_rot = x * (np.cos(argument_perihelion) * np.cos(ascending_node) - np.sin(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination)) - \
y * (np.sin(argument_perihelion) * np.cos(ascending_node) + np.cos(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination))
y_rot = x * (np.cos(argument_perihelion) * np.sin(ascending_node) + np.sin(argument_perihelion) * np.cos(ascending_node) * np.cos(inclination)) + \
y * (np.cos(argument_perihelion) * np.cos(ascending_node) - np.sin(argument_perihelion) * np.sin(ascending_node) * np.cos(inclination))
z_rot = x * np.sin(argument_perihelion) * np.sin(inclination) + y * np.sin(argument_perihelion) * np.sin(inclination)
color = "blue"
ax.plot(x_rot, y_rot, z_rot, color=color, lw=3)
# -- END plot Earth orbit
custom_legend = [Line2D([0], [0], color="blue", lw=3),
Line2D([0], [0], color="olive", lw=1),
Line2D([0], [0], color="cyan", lw=1),
Line2D([0], [0], color="red", lw=1),
Line2D([0], [0], color="orange", lw=1),
Line2D([0], [0], color="purple", lw=1),
Line2D([0], [0], color="pink", lw=1),
Line2D([0], [0], color="gray", lw=1),
Line2D([0], [0], color="green", lw=1),
Line2D([0], [0], color="brown", lw=1),
Line2D([0], [0], color="aquamarine", lw=1),
Line2D([0], [0], color="navy", lw=1)]
ax.legend(custom_legend, ['Earth', 'Atira', 'Aten', 'Apollo', 'Amor',
'Obj. w/ peri. dist. < 1.665 AU',
'Hungaria', 'MBA', 'Phocaea',
'Hilda', 'Jupiter Trojan', 'Distant Object'])
ax.scatter(0, 0, 0, color='yellow', label='Sol Barycenter')
ax.set_title('Orbit Plot')
ax.set_xlabel('X (AU)')
ax.set_ylabel('Y (AU)')
ax.set_zlabel('Z (AU)')
ax.set_xlim(-3, 3) # set map limits here
ax.set_ylim(-3, 3)
ax.set_zlim(-3, 3)
plt.show()
# set filters here for which kind of objects should be plotted
def filterNEO(n):
if (not n.orbit_type):
return True
else:
return False
def main():
print("Reading JSON data...")
NEO_data = readJSON("data/orbit/nea_extended.json") # you may also load other JSONs from Minor Planet Center
MAX_OBJECTS = 1e8 # set max. number of orbits you want to plot so that your computer doesn't set itself on fire
orbit_poly = 1000 # how crisp the minor planet orbits should be rendered
NEOs = []
i = 0
for n in NEO_data:
try:
name = n["Name"]
except KeyError:
name = None
try:
number = n["Number"]
except KeyError:
number = None
try:
orbit_type = n["Orbit_type"]
except KeyError:
orbit_type = None
new_NEO = NEO(name, number, n["Epoch"],
n["a"], n["e"], n["i"], n["Node"],
n["Peri"], n["M"], orbit_type)
if not filterNEO(new_NEO):
NEOs.append(new_NEO)
i += 1
if i > MAX_OBJECTS:
break
print("Generating orbit plot...")
generate_orbits(NEOs, orbit_poly)
main()