-
Notifications
You must be signed in to change notification settings - Fork 23
/
04-distributions.Rmd
666 lines (500 loc) · 21.1 KB
/
04-distributions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
---
title: "Lab 04: Distributions & Summary Statistics"
subtitle: "CS631"
author: "Alison Hill"
output:
html_document:
theme: flatly
toc: TRUE
toc_float: TRUE
toc_depth: 2
number_sections: TRUE
---
```{r setup, include = FALSE, cache = FALSE}
knitr::opts_chunk$set(error = TRUE, comment = NA, warning = FALSE, errors = FALSE, message = FALSE, tidy = FALSE, cache = FALSE)
```
# Slides for today
```{r echo = FALSE}
knitr::include_url("slides/04-slides.html")
```
# Packages
New ones to install:
```{r eval = FALSE}
install.packages("ggbeeswarm")
install.packages("skimr")
install.packages("janitor")
install.packages("ggridges")
```
To load:
```{r}
library(tidyverse)
library(ggbeeswarm)
library(skimr)
library(janitor)
library(ggridges)
```
# Make the data
Below are simulated four distributions (n = 100 each), all with similar measures of center (mean = 0) and spread (s.d. = 1), but with distinctly different shapes.^[The [code for these distributions](https://github.com/hadley/boxplots-paper/blob/master/boxplots-density.r) comes from Hadley Wickham's paper on ["40 years of boxplots"](http://vita.had.co.nz/papers/boxplots.html)]
1. A standard normal (`n`);
2. A skew-right distribution (`s`, Johnson distribution with skewness 2.2 and kurtosis 13);
3. A leptikurtic distribution (`k`, Johnson distribution with skewness 0
and kurtosis 30);
4. A bimodal distribution (`mm`, two normals with mean -0.95 and 0.95 and standard deviation 0.31).
```{r find_params}
#install.packages("SuppDists")
library(SuppDists)
# this is used later to generate the s and k distributions
findParams <- function(mu, sigma, skew, kurt) {
value <- .C("JohnsonMomentFitR", as.double(mu), as.double(sigma),
as.double(skew), as.double(kurt - 3), gamma = double(1),
delta = double(1), xi = double(1), lambda = double(1),
type = integer(1), PACKAGE = "SuppDists")
list(gamma = value$gamma, delta = value$delta,
xi = value$xi, lambda = value$lambda,
type = c("SN", "SL", "SU", "SB")[value$type])
}
```
```{r make_data}
# Generate sample data -------------------------------------------------------
set.seed(141079)
# normal
n <- rnorm(100)
# right-skew
s <- rJohnson(100, findParams(0, 1, 2.2, 13))
# leptikurtic
k <- rJohnson(100, findParams(0, 1, 0, 30))
# mixture
mm <- rnorm(100, rep(c(-1, 1), each = 50) * sqrt(0.9), sqrt(0.1))
```
# Tidy the data
```{r make_data_long}
four <- data.frame(
dist = factor(rep(c("n", "s", "k", "mm"),
each = 100),
c("n", "s", "k", "mm")),
vals = c(n, s, k, mm)
)
```
# Explore the data
```{r}
glimpse(four)
```
Let's see what our descriptive statistics look like:
```{r desc_stats}
skim(four)
four %>%
group_by(dist) %>%
skim()
```
# Histograms
What you want to look for:
* How many "mounds" do you see? (modality)
* If 1 mound, find the peak: are the areas to the left and right of the peak symmetrical? (skewness)
* Notice that kurtosis (peakedness) of the distribution is difficult to judge here, especially given the effects of differing binwidths.
The nice thing about `ggplot` is that we can use `facet_wrap`, and the x- and y-axes are the same, and the size of the binwidths are also the same.
```{r gghist}
#2 x 2 histograms in ggplot
ggplot(four, aes(x = vals)) + #no y needed for visualization of univariate distributions
geom_histogram(fill = "white", colour = "black") + #easier to see for me
coord_cartesian(xlim = c(-5, 5)) + #use this to change x/y limits!
facet_wrap(~ dist) #this is one factor variable with 4 levels
```
## Binwidths
Always change the binwidths on a histogram. Sometimes the default in `ggplot` works great, sometimes it does not.
Super narrow:
```{r gghist_narrow}
#2 x 2 histograms in ggplot
ggplot(four, aes(x = vals)) +
geom_histogram(binwidth = .1, fill = "white", colour = "black") + #super narrow bins
coord_cartesian(xlim = c(-5, 5)) +
facet_wrap(~ dist)
```
Super wide:
```{r gghist_wide}
#2 x 2 histograms in ggplot
ggplot(four, aes(x = vals)) +
geom_histogram(binwidth = 2, fill = "white", colour = "black") + #super wide bins
coord_cartesian(xlim = c(-5, 5)) +
facet_wrap(~ dist)
```
Just right? Pretty close to the default for this data.
```{r gghist_right}
#2 x 2 histograms in ggplot
ggplot(four, aes(x = vals)) +
geom_histogram(binwidth = .2, fill = "white", colour = "black") +
coord_cartesian(xlim = c(-5, 5)) +
facet_wrap(~ dist)
```
## Add a rug
```{r gghist_rug}
#2 x 2 histograms in ggplot
ggplot(four, aes(x = vals)) +
geom_histogram(binwidth = .2, fill = "white", colour = "black") +
geom_rug() +
coord_cartesian(xlim = c(-5, 5)) +
facet_wrap(~ dist)
```
# Boxplots (medium to large N)
What you want to look for:
* The center line is the median: does the length of the distance to the upper hinge appear equal to the length to the lower hinge? (symmetry/skewness: Q3 - Q2/Q2 - Q1)
* Are there many outliers?
* Notice that modality of the distribution is difficult to judge here.
```{r ggbox}
ggplot(four, aes(y = vals, x = dist)) +
geom_boxplot() +
scale_x_discrete(name="") +
scale_y_continuous(name="") +
coord_cartesian(ylim = c(-4,4))
```
## Add notches
[ggplot notches](http://docs.ggplot2.org/0.9.3.1/geom_boxplot.html): "Notches are used to compare groups; if the notches of two boxes do not overlap, this is strong evidence that the medians differ." (Chambers et al., 1983, p. 62)
```{r ggbox_notch}
ggplot(four, aes(y = vals, x = dist)) +
geom_boxplot(notch = T) +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4,4))
```
## Add summary statistics
Here we add a diamond for the mean (see other possible shape codes [here](http://www.cookbook-r.com/Graphs/Shapes_and_line_types/)).
```{r ggbox_stat}
ggplot(four, aes(x = dist, y = vals)) +
geom_boxplot() +
stat_summary(fun.y = mean,
geom = "point",
shape = 18,
size = 4,
colour = "lightseagreen") +
coord_cartesian(ylim = c(-4, 4))
```
# Univariate scatterplots (small to medium n)
Options:
* [Stripchart](http://stat.ethz.ch/R-manual/R-patched/library/graphics/html/stripchart.html): "one dimensional scatter plots (or dot plots) of the given data. These plots are a good alternative to boxplots when sample sizes are small."
* [Beeswarm](https://cran.r-project.org/web/packages/beeswarm/beeswarm.pdf): "A bee swarm plot is a one-dimensional scatter plot similar to 'stripchart', except that would-be overlapping points are separated such that each is visible."
## Stripchart
Combining `geom_jitter() + stat_summary()` is the ggplot corollary to a stripchart.
```{r ggjitter_stat}
ggplot(four, aes(x = dist, y = vals)) +
geom_jitter(position = position_jitter(height = 0, width = .1),
fill = "lightseagreen",
colour = "lightseagreen",
alpha = .5) +
stat_summary(fun.y = median,
fun.ymin = median,
fun.ymax = median,
geom = "crossbar",
width = 0.5) +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
## Dotplot
This is a beeswarm-like ggplot- not exactly the same, but gives you the same idea.
```{r ggdot_stat}
ggplot(four, aes(x = dist, y = vals)) +
geom_dotplot(stackdir = "center",
binaxis = "y",
binwidth = .1,
binpositions = "all",
stackratio = 1.5,
fill = "lightseagreen",
colour = "lightseagreen") +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
## Beeswarm
https://github.com/eclarke/ggbeeswarm
```{r eval=FALSE}
install.packages("ggbeeswarm")
library(ggbeeswarm)
```
```{r ggbee1_stat}
ggplot(four, aes(x = dist, y = vals)) +
geom_quasirandom(fill = "lightseagreen",
colour = "lightseagreen") +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
```{r ggbee2_stat}
ggplot(four, aes(x = dist, y = vals)) +
geom_quasirandom(fill = "lightseagreen",
colour = "lightseagreen",
method = "smiley") +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
Note that these recommendations do not apply if your data is "big". You will know your data is too big if you try the below methods and you can't see many of the individual points (typically, N > 100).
# Boxplots + univariate scatterplots (small to medium n)
Combining `geom_boxplot() + geom_dotplot()` is my personal pick for EDA when I have small - medium data (N < 100).
```{r ggbox_dot}
ggplot(four, aes(y = vals, x = dist)) +
geom_boxplot(outlier.shape = NA) +
geom_dotplot(binaxis = 'y',
stackdir = 'center',
stackratio = 1.5,
binwidth = .1,
binpositions = "all",
dotsize = 1,
alpha = .75,
fill = "lightseagreen",
colour = "lightseagreen",
na.rm = TRUE) +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
You can also combin `geom_boxplot() + geom_jitter()`. I left the outliers in to demonstrate the jittered points only go left to right because I set the jitter `height = 0`.
```{r ggbox_jitter}
ggplot(four, aes(y = vals, x = dist)) +
geom_boxplot(width = .5) + #left the outliers in here, so they are double-plotted
geom_jitter(fill = "lightseagreen",
colour = "lightseagreen",
na.rm = TRUE,
position = position_jitter(height = 0, width = .1),
alpha = .5) +
scale_x_discrete(name = "") +
scale_y_continuous(name = "") +
coord_cartesian(ylim = c(-4, 4))
```
# Density plots (medium to large n)
A few ways to do this:
* [Kernel density](https://chemicalstatistician.wordpress.com/2013/06/09/exploratory-data-analysis-kernel-density-estimation-in-r-on-ozone-pollution-data-in-new-york-and-ozonopolis/): "Kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable. Kernel density estimation is a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample." - from [wikipedia](https://en.wikipedia.org/wiki/Kernel_density_estimation)
* [Violin plots](https://cran.r-project.org/web/packages/UsingR/UsingR.pdf): "This function serves the same utility as side-by-side boxplots, only it provides more detail about the different distribution. It plots violinplots instead of boxplots. That is, instead of a box, it uses the density function to plot the density. For skewed distributions, the results look like "violins". Hence the name."
- Some violin plots also include the boxplot so you can see Q1/Q2/Q3.
* [Beanplots](https://cran.r-project.org/web/packages/beanplot/vignettes/beanplot.pdf): "The name beanplot stems from green beans. The density shape can be seen as the pod of a green bean, while the scatter plot shows the seeds inside the pod."
## Density plots
```{r ggdensity}
ggplot(four, aes(x = vals)) +
geom_density(fill = "lightseagreen") +
coord_cartesian(xlim = c(-5, 5)) +
facet_wrap(~ dist)
```
Instead of doing a `facet_wrap`, I could make just one plot showing all four distributions. To make each distribution a different color, set the `fill` within the `aes`, and assign it to the factor variable `dist`. Since now all four will be plotted on top of each other, add an `alpha` level to make the color fill transparent (0 = completely transparent; 1 = completely opaque).
```{r ggdensityinone}
# Density plots with semi-transparent fill
ggplot(four, aes(x = vals, fill = dist)) +
geom_density(alpha = .5)
```
### Add a histogram
These are pretty easy to make in `ggplot`. However, note that the y-axis is different from if you just plotted the histogram. In fact, when interpreting this plot, the y-axis is only meaningful for reading density. It is meaningless for interpreting the histogram.
```{r gghist_density}
ggplot(four, aes(x = vals)) +
geom_histogram(aes(y = ..density..),
binwidth = .5,
colour = "black",
fill = "white") +
geom_density(alpha = .5, fill = "lightseagreen") +
coord_cartesian(xlim = c(-5,5)) +
facet_wrap(~ dist)
```
## Violin plots
My advice: always set `color = NA` for `geom_violin`. For fill, always set `alpha`.
```{r ggvio}
ggplot(four, aes(x = dist, y = vals)) +
geom_violin(color = NA,
fill = "lightseagreen",
alpha = .5,
na.rm = TRUE,
scale = "count") + # max width proportional to sample size
coord_cartesian(ylim = c(-4, 4))
```
### Add a boxplot
Combination `geom_violin() + geom_boxplot()` is my personal pick for EDA when I have large data (N > 100).
```{r ggbox_vio}
ggplot(four, aes(x = dist, y = vals)) +
geom_boxplot(outlier.size = 2,
colour = "lightseagreen",
fill = "black",
na.rm = TRUE,
width = .1) +
geom_violin(alpha = .2,
fill = "lightseagreen",
colour = NA,
na.rm = TRUE) +
coord_cartesian(ylim = c(-4, 4))
```
Note that it is just as easy to layer a univariate scatterplot over a violin plot, just by replacing the `geom_boxplot` with a different geom as shown abobe. Lots of combination plots are possible!
# Split violin
Using David Robinson's code: https://gist.github.com/dgrtwo/eb7750e74997891d7c20
```{r echo = FALSE}
# somewhat hackish solution to:
# https://twitter.com/EamonCaddigan/status/646759751242620928
# based mostly on copy/pasting from ggplot2 geom_violin source:
# https://github.com/hadley/ggplot2/blob/master/R/geom-violin.r
library(ggplot2)
library(dplyr)
"%||%" <- function(a, b) {
if (!is.null(a)) a else b
}
geom_flat_violin <- function(mapping = NULL, data = NULL, stat = "ydensity",
position = "dodge", trim = TRUE, scale = "area",
show.legend = NA, inherit.aes = TRUE, ...) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomFlatViolin,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
trim = trim,
scale = scale,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomFlatViolin <-
ggproto("GeomFlatViolin", Geom,
setup_data = function(data, params) {
data$width <- data$width %||%
params$width %||% (resolution(data$x, FALSE) * 0.9)
# ymin, ymax, xmin, and xmax define the bounding rectangle for each group
data %>%
group_by(group) %>%
mutate(ymin = min(y),
ymax = max(y),
xmin = x,
xmax = x + width / 2)
},
draw_group = function(data, panel_scales, coord) {
# Find the points for the line to go all the way around
data <- transform(data, xminv = x,
xmaxv = x + violinwidth * (xmax - x))
# Make sure it's sorted properly to draw the outline
newdata <- rbind(plyr::arrange(transform(data, x = xminv), y),
plyr::arrange(transform(data, x = xmaxv), -y))
# Close the polygon: set first and last point the same
# Needed for coord_polar and such
newdata <- rbind(newdata, newdata[1,])
ggplot2:::ggname("geom_flat_violin", GeomPolygon$draw_panel(newdata, panel_scales, coord))
},
draw_key = draw_key_polygon,
default_aes = aes(weight = 1, colour = "grey20", fill = "white", size = 0.5,
alpha = NA, linetype = "solid"),
required_aes = c("x", "y")
)
```
```{r}
ggplot(four, aes(x = dist, y = vals)) +
geom_flat_violin(alpha = .5,
fill = "lightseagreen",
colour = NA,
na.rm = TRUE) +
coord_flip()
```
# Ridgeline plots
Typically makes the most sense to have the factor variable like `dist` on the y-axis for these.
https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html
```{r ggridgeline}
# play with scale
ggplot(four, aes(x = vals, y = dist)) +
geom_density_ridges(scale = 0.9,
fill = "lightseagreen",
alpha = .5)
```
# Raincloud plots
https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html
```{r ggraincloud}
ggplot(four, aes(x = vals, y = dist)) +
geom_density_ridges(jittered_points = TRUE,
position = "raincloud",
fill = "lightseagreen",
alpha = 0.7,
scale = 0.7)
```
# Plotting summary statistics
The more general `stat_summary` function applies a summary function to the variable mapped to y at each x value.
## Means and error bars
The simplest summary function is `mean_se`, which returns the mean and the mean plus its standard error on each side. Thus, `stat_summary` will calculate and plot the mean and standard errors for the y variable at each x value.
The default geom is "pointrange" which places a dot at the central y value and extends lines to the minimum and maximum y values. Other geoms you might consider to display summarized data:
* `geom_errorbar`
* `geom_pointrange`
* `geom_linerange`
* `geom_crossbar`
There are a few summary functions from the `Hmisc` package which are reformatted for use in `stat_summary()`. They all return aesthetics for `y`, `ymax`, and `ymin`.
* `mean_cl_normal()`
- Returns sample mean and 95% confidence intervals assuming normality (i.e., t-distribution based)
* `mean_sdl()`
- Returns sample mean and a confidence interval based on the standard deviation times some constant
* `mean_cl_boot()`
- Uses a bootstrap method to determine a confidence interval for the sample mean without assuming normality.
* `median_hilow()`
- Returns the median and an upper and lower quantiles.
```{r}
ggplot(four, aes(x = dist, y = vals)) +
stat_summary(fun.data = "mean_se")
```
```{r}
ggplot(four, aes(x = dist, y = vals)) +
stat_summary(fun.y = "mean", geom = "point") +
stat_summary(fun.y = "max", geom = "point", shape = 21)
```
```{r}
ggplot(four, aes(x = dist, y = vals)) +
stat_summary(fun.data = median_hilow)
```
You may have noticed two different arguments that are potentially confusing: `fun.data` and `fun.y`. If the function returns three values, specify the function with the argument `fun.data`. If the function returns one value, specify `fun.y`. See below.
```{r}
x <- c(1, 2, 3)
mean(x) # use fun.y
mean_cl_normal(x) # use fun.data
```
Confidence limits may give us a better idea than standard error limits of whether two means would be deemed statistically different when modeling, so we frequently use `mean_cl_normal` or `mean_cl_boot` in addition to `mean_se`.
## Connecting means with lines
Using the `ToothGrowth` dataset
```{r}
data(ToothGrowth)
tg <- ToothGrowth
```
```{r}
# Standard error of the mean
ggplot(tg, aes(x = dose, y = len, colour = supp)) +
stat_summary(fun.data = "mean_se") +
ggtitle("Mean +/- SE")
# Connect the points with lines
ggplot(tg, aes(x = dose, y = len, colour = supp)) +
stat_summary(fun.data = "mean_se") +
stat_summary(fun.y = mean, geom = "line") +
ggtitle("Mean +/- SE")
# Use 95% confidence interval instead of SEM
ggplot(tg, aes(x = dose, y = len, colour = supp)) +
stat_summary(fun.data = "mean_cl_normal") +
stat_summary(fun.y = mean, geom = "line") +
ggtitle("Mean with 95% confidence intervals")
# The errorbars overlapped, so use position_dodge to move them horizontally
pd <- position_dodge(0.1) # move them .05 to the left and right
ggplot(tg, aes(x = dose, y = len, colour = supp)) +
stat_summary(fun.data = "mean_cl_normal", position = pd) +
stat_summary(fun.y = mean, geom = "line", position = pd) +
ggtitle("Mean with 95% confidence intervals")
```
Not the best example for this geom, but another good one for showing variability...
```{r}
# ribbon geom
ggplot(tg, aes(x = dose, y = len, colour = supp, fill = supp)) +
stat_summary(fun.y = mean, geom = "line") +
stat_summary(fun.data = mean_se, geom = "ribbon", alpha = .5)
```
## Bars with error bars
If you must...
```{r}
# Standard error of the mean; note positioning
ggplot(tg, aes(x = factor(dose), y = len, fill = supp)) +
stat_summary(fun.y = mean, geom = "bar", position = position_dodge(width = .9)) +
stat_summary(fun.data = mean_se, geom = "linerange", position = position_dodge(width = .9)) +
ggtitle("Mean +/- SE")
# Use 95% confidence interval instead of SEM
ggplot(tg, aes(x = factor(dose), y = len, fill = supp)) +
stat_summary(fun.y = mean, geom = "bar", position = position_dodge(width = .9)) +
stat_summary(fun.data = mean_cl_boot, geom = "linerange", position = position_dodge(width = .9)) +
ggtitle("Mean with 95% confidence intervals")
```
More help here: http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/