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Abstract

Rendering engines like appleseed1 use camera simulations for image formation. Oftentimes however, such camera
models are simplifications of realistic cameras that compromise true realism for rendering efficiency. In this thesis,
appleseed’s camera models are extended by a physically-based multi-lens camera based on scientific literature that
features realistic lens phenomena. The implementation is then tested and compared to simpler camera models.
The results show that the implemented model is capable of capturing a multitude of optical phenomena of real
cameras and that these effects achieve realism better than existing camera models. While a certain rendering
deficiency is found, it is shown that this overhead solely depends on the used lens’s complexity and, under the
right conditions, accounts for a fraction of the total rendering time.

1appleseed is an open source, physically-based global illumination rendering engine designed for animation and visual effects.
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Zusammenfassung

Rendering Engines wie appleseed2 setzen Simulationen von Kameras ein, um Bilder zu generieren. Meist sind sol-
che Kameramodelle allerdings Vereinfachungen von realistischen Kameras, die wahren Realismus für Rendering-
Geschwindigkeit opfern. In dieser Arbeit werden appleseed’s Kameramodelle um ein physikalisch korrektes Ka-
meramodell ergänzt, das auf wissenschaftlichen Publikationen basiert und fähig ist, Kameraphänomene realitäts-
getreu abzubilden. Die Implementation wird danach auf ihre Richtigkeit überprüft und mit einfacheren Kame-
ramodellen verglichen. Die Resultate zeigen, dass das implementierte Modell in der Lage ist, eine Vielzahl an
optischen Phänomenen von realistischen Kameras einzufangen, die zu verbessertem Fotorealismus im Vergleich
zu einfacheren Kameras führen. Obwohl gewisse Geschwindigkeitseinbussen in Kauf genommen werden müs-
sen, kann gezeigt werden, dass der Rendering-Mehraufwand alleinig von der Komplexität des Objektivs abhängt.
Weiter nimmt der Mehraufwand, unter geeigneten Bedingungen, nur einen Bruchteil der Gesamtrenderzeit in
Anspruch.

2appleseed ist eine Open Source Rendering Engine konzipiert für Animation und visuelle Effekte.
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1 Introduction

Photorealistic image quality is the flagship of many rendering engines. While this mostly concerns the transport-
ation of light and the interaction of light with materials, a suitable camera model is of importance as well, but
tends to be neglected [KMH95]. Instead, many rendering engines settle for simpler approximations of complex
models, who allow for photographic effects to a certain degree, like depth of field or motion blur. As they are
modelled in an optically perfect way and omit imperfections that arise in realistic lens systems of multiple lens
elements, many phenomena that constitute photorealism fall short. To take these effects into account, light trans-
port between the scene and the film has to be computed as if a real camera was placed in between [SDHL11]. In
this thesis, such a physically-based multi-lens camera model is implemented in the open source rendering engine
appleseed [Bea+19]. Although not commonly featured in production rendering engines due to the prejudices
of slowness and inefficiency, an accurate physically-based model offers advantages in various situations. First
and foremost, it fills the gap of the shortcomings of simpler camera models, such as the generation of optical
aberrations, realistic vignetting or bokeh effects. Only the inclusion of these phenomena enables the imitation
of real-life photography. Beyond that, computer-generated imagery finds extensive use in areas like augmented
reality, virtual reality, or the film industry. Whenever real imagery is merged with digital generations, the two
must not be distinguishable, which can only be achieved by rendering with a camera similar to the one used for
filming [SDHL11]. Additionally, the simulation of a real camera and its correct behavior facilitates its use, as
most people are familiar with basic camera operation and have a sense for the image outcome based on their
camera setup and settings [KMH95].

Especially in the current century, a number of physically-based camera models have been contributed to the
literature. For many, the work of Kolb et al. from 1995 [KMH95] serves as a foundation to build on. They were the
first to propose all requirements to realistically compute light transport through a real lens. Utilizing prescriptions
of real lenses, they let light rays interact with the lens in a physically accurate way. In later advancements of
this ray simulation approach, performance, range of effects, and adjustability were improved, but the core idea
was kept [Wu+10; SDHL11; WZHX13]. Only in 2012, a new way of camera simulation emerged. Hullin et
al. [HHH12] approximate the analytical light transport solution by a polynomial system, thereby omitting ray
tracing through the lens. In a number of follow-up papers, improvements were suggested, especially concerning
the construction of the polynomial and the approximation error that determines the image quality [HD14; SHD16;
ZZ17b; ZZ17a].

The goal of this thesis is to contribute a multi-lens camera model to appleseed’s open source repository
that is able to render physically accurate imagery including camera-induced effects. Besides full functionality, it
should convey the feeling of a real camera and offer adjustability of focal length, focus distance and aperture size
and shape, similar to what a photographer can do with his camera. To start off, different camera models relevant
to computer graphics are presented and their characteristics and features are reasoned with reference to the optical
foundations thereof. Following that, realistic camera imperfections, so-called aberrations, are discussed, which
account for a large part of the added realism of the multi-lens camera over simpler camera models. In addition
to aberrations, other distinct phenomena such as bokeh, lens flare, or vignetting are talked about. In the second
part of Chapter 2, a literature overview is presented, showcasing the current state of modeling realistic cameras.
It can roughly be divided into ray simulation models based on Kolb et al., physically accurate calculations of how
a ray moves through the lens, and polynomial models following Hullin et al., approximating the behavior of the
lens using polynomials. In Chapter 3, different concrete models of both literature paths are compared on various
aspects. While most papers remain relatively silent about performance, especially comparing ray simulation to
polynomial approximation, some usable hints can be found nonetheless. On the topic of performance, different
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1 Introduction

sampling methods are assessed, which play an important role for efficiency when tracing rays through the lens.
When it comes to the range of supported phenomena, much clearer distinctions can be made, although most
models stay within similar bounds. Finally, under consideration of said factors and the suitability for appleseed’s
environment and codebase, a choice for implementation is made, which is then described in detail in Chapter 4.
Chapter 5 demonstrates the correctness of the implementation by presenting renders that exhibit the previously
discussed phenomena. The last chapter is then dedicated to an analysis of the implementation. Besides supported
effects and image quality, an in-depth performance evaluation is conducted, relating the implemented model to
other camera models of appleseed, like the pinhole or thin lens camera.
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2 Background and Related Work

This chapter first presents relevant background knowledge about camera models and optical phenomena thereof.
While many concepts originate from optical sciences, the focus lies on computer graphics. Optical background
is provided where necessary, but not expanded on greatly. The interested reader is referred to book such as
Introduction to Optics [PP93], Modern Optical Engineering [Smi00] or Optics [Hec17]. In a second segment,
the current state of research about realistic cameras in rendering is presented, differentiating between ray tracing
through lens systems and polynomial approximations of it.

2.1 Background Knowledge

A rendering engine can utilize different camera models when transforming a 3D model into a 2D image. De-
pending on the needs, such cameras can range from primitive pinhole to realistic photographic lens models. With
increasing realism and digital modeling of real physics, a multitude of optical effects known from real photo-
graphy is introduced in the rendered images [Wel91].

2.1.1 Camera Models

All camera models that see use in computer graphics share some common traits. Their task is to capture light
from the object space onto a two-dimensional image space. Despite different internals, all models project objects
onto an image plane or film plane, in digital cameras a sensor [Bar+03].

Pinhole Camera

The pinhole camera, depicted in Figure 2.1, is the most frequently used model in computer graphics [HSS97;
SDHL11]. Its concept dates back to the Middle Ages [You89]. Later, Leonardo da Vinci used the pinhole model
to allegedly solve the problem of why objects cast different images at different distances onto a screen [Thr94].
Also known as camera obscura, this camera is a box with a single opening, through which light rays can fall into
the box. The hole has no diameter, therefore only a single ray of light from each point in the scene can fall into
the box. On the opposite wall inside the camera, an upside-down image is projected [HSS97; Bar+03].

While it is possible to build a working camera obscura, it is not very practical as the small hole only allows
for very little light to pass and requires long exposure times. Its simplicity, however, make this model very
attractive in terms of efficiency for rendering engines [ZZ17b].

Figure 2.1: The pinhole camera projects the scene upside-down onto the image plane inside the box.
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2 Background and Related Work

Thin Lens Model

The pinhole camera with no diameter is a theoretical concept and only works in the realm of computers. In
reality, every physically built pinhole camera has a finite opening, hereafter called aperture, that lets many light
rays pass. The simplest of such finite aperture models is the thin lens approximation that finds use in optics and
lens design [HSS97]. In essence, it consists of a single spherical lens that is assumed to have no thickness [Smi00;
Bar+03]. That way, an incoming ray of light is refracted only once by the lens on the so-called principal plane
and otherwise moves in a straight line [BW99; HSS97].

The schematics of the thin lens model are visualized in Figure 2.2. Light from a point P in object space
is focused in a single point P ′ in image space. Additionally, two focal points F and F ′ exist. All light rays
coming from object space that are parallel to the optical axis meet at F ′ after being refracted by the lens, while
analogously, parallel image space rays meet at F [HSS97; Bar+03]. The distance f between a focal point and the
principal plane is known as the focal length [Smi00]. If the indices of refraction on both sides of the lens are the
same, the focal lengths are equal [HSS97]. The main law around image formation in a thin lens is the thin lens
equation

1

s
+

1

s′
=

1

f
, (2.1)

that relates the object distance s and the image distance s′ to the focal length f [PC82; PP93].

optical axis

P

P ′

F

F ′

f f ′

s s′

Figure 2.2: Thin lens model, where the lens thickness is omitted such that a ray has only one refraction point.

Focus One notion that is introduced with the thin lens model is focus and depth of field [PC82]. While a
pinhole camera displays every object at any distance in focus and therefore has an infinite depth of field, this is
not the case with a thin lens. When one wants to focus on an object that lies on a plane with a certain distance s to
the lens, the so-called focal plane, the film plane needs to be at a distance s′ to the center of the lens. Rearranging
Equation 2.1 for s′ yields

s′ =
fs

s− f
. (2.2)

An object behind the focal plane, as shown in Figure 2.3, is projected in front of the film plane, whereas an
object in front of the focal plane has its focus behind the film plane. In both cases, the image of the object appears
as a blurred circle, rather than a focused point. This circle is called circle of confusion or blur disk [Bar+03].

Thick Lens Model

As opposed to the thin lens approximation, the thick lens model features a finite thickness. Its main use in com-
puter graphics is to approximate more complex lens models consisting of multiple lenses [KMH95; HSS97].

A thick lens model has two principal planes, called primary principal planeH and secondary principal plane
H ′ with a certain distance t to each other. They are defined analogously to the thin lens principal plane, with
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2 Background and Related Work

P P ′
circle of confusion

d d′

focal plane film plane

Figure 2.3: The circle of confusion in the thin lens model.

the addition that rays move axis-parallel between the principal planes. To find the position of the secondary
principal plane, a ray parallel to the optical axis is refracted by the lens, shown as a dotted line in Figure 2.4, and
intersected with the optical axis at F ′. Connecting the incident and emanating ray yields a point on the secondary
principal plane. In the same fashion, axis-parallel rays from image space meet at the primary focal point F and
the intersection of original and refracted ray define the primary principal plane. [KMH95]

The principal planes can either be found by tracing rays through the lens or are calculated analytically using
lens thickness formulae [KMH95; Bar+03]. Once they are determined, image generation is calculated in the
same way as with the thin lens model, with the only difference being that s now depicts the distance between P
and H , while s′ is the distance between P ′ and H ′. Following this, focusing an object or calculating its circle
of confusion can be derived from the thin lens model, only needing an axis-parallel translation of rays from the
primary to the secondary principal plane [Bar+03].

optical axis

H H ′

P

P ′

F

F ′

t
f f ′

s s′

Figure 2.4: Thick lens model featuring two principal planes, between which rays are shifted parallel to the optical
axis. Dotted lines show the real paths of light rays.

Realistic Camera

The general consensus of literature is that the previously described models do not allow for accurate simulation
of real physics and optical effects [KMH95; Wu+10; SDHL11]. Therefore, models of real photographic lenses
have been introduced to computer graphics. Such a lens system consists of a number of lenses and stops centered
on the optical axis. Stops are opaque lens elements with circular openings, of which the aperture (or aperture stop
or diaphragm) is the stop that limits light rays the most [Bar+03]. Photographic lenses usually have an adjustable
aperture to change its size and to therefore adjust the amount of light hitting the film plane and to change the
depth of field that increases when the aperture shrinks [KMH95; PP93].

Snell’s Law of Refraction Physical accuracy of realistic camera models comes from considering Snell’s law
of refraction at every surface of the optical system. This formula describes the relationship between the angles
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2 Background and Related Work

of incidence and refraction of light and can be applied to any surface that has an intersection point and a surface
normal [PP93; Smi00]. In its basic form, Snell’s law states

nI sin θI = nT sin θT , (2.3)

where n1 and n2 are the indices of refraction of the originating and the entering medium, θI is the incident angle
and θT the refraction angle, although other variables are commonly used as well [PP93; Smi00]. For convenience
of calculation, the relationship is frequently written in vector form as

nI(I× N) = nT (T× N), (2.4)

where I and T are the incoming and outgoing ray directions and N is the surface normal [Wu+10]. A schematic
representation of this relationship is given in Figure 2.5.

surface

N

nI nT

θI

θT

I

T

Figure 2.5: Snell’s law of refraction relates the angle of incidence and the angle of refraction of a light ray.

Entrance and Exit Pupil When looking through a lens, the image of the aperture stop is called entrance
pupil when looking from object space and exit pupil from image space respectively [Nas10; Hec17]. These
virtual pupils and the aperture stop are very closely related. If a ray passes through one of them, it passes through
the others and therefore through the whole lens system [Wu+10]. The marginal ray of the aperture stop defines
the size of the pupils, while the center ray determines the center. Figure 2.6 shows the entrance pupil of a lens
consisting of two elements and an aperture stop in between. In such an optimal lens, all points have the same
entrance and exit pupil, regardless of their distance to the optical axis [Mah11]. In reality however, many lenses
with multiple elements distort the pupils when looking from an angle to modify exposure at the edge of the
film [Kin92; Hec17].

P1 P ′1

aperture entrance pupil

P2

P ′2

aperture entrance pupil

Figure 2.6: The location of the entrance pupil of a lens with two elements for two object points.

Tabular Lens Description Lens systems are typically described in a tabular form, as for example a 50mm
f/1.8 double-Gauss lens [Lai95, p.77] in Figure 2.7. While lens manufacturers are cautious when it comes
to releasing lens design data, some lens descriptions can be found in patents or collections like the books by
Smith [Smi92] or Laikin [Lai95]. Each row corresponds to a lens surface, listed from front (object space) to rear
(image space) and provides measurements in millimeters. The first column denotes the signed radius of curvature

6



2 Background and Related Work

of a surface, none or 0 stands for a planar surface. A positive value indicates convexity when viewed from the
object space, while a negative curvature means concavity. The thickness entry measures the distance from the
current surface to the next one along the optical axis. Next is usually information about the material between the
current and the next surface, either as a material name (e.g. BASF-2) or a combination of the index of refraction
at the sodium d line and the V-Number that indicates the change of index of refraction with wavelength. The
latter variant is represented in Figure 2.7. The last entry is the diameter of the lens element. [KMH95; WZHL11;
WZHX13]

Radius [mm] Thickness [mm] nd Vd Diameter [mm]

33.802 5.817 1.6645 35.91 41.66
85.717 0.279 39.12
28.745 6.807 1.6779 55.20 34.54
362.913 2.032 1.6477 33.84 34.54
16.728 9.779 22.61

10.211 19.05
−15.870 2.057 1.6889 31.14 21.34
142.743 7.899 1.9610 54.81 32.77
−24.277 0.279 32.77
−217.518 5.994 1.6779 55.20 40.13
−37.368 0.279 40.13
77.892 4.597 1.9610 54.81 43.94

−1178.029 35.509 43.94

Figure 2.7: Tabular description and profile view of a 50mm f/1.8 double-Gauss lens [Lai95, p.77]. The lens
visualization on the right was created using RayOpt3.

2.1.2 Aberrations

Unlike the pinhole camera, a physical camera is not able to create perfect images. Perfect in this sense means
projecting a point in object space to a single point in image space. We can describe the point (x′, y′) where a ray
hits the image plane as a function of h and (s, θ). h denotes the distance from the point (x, y) in object space to
the optical axis and (s, θ) are polar coordinates on the exit pupil where the ray intersects it [PP93; Smi00]. Such a
projection equation consists of terms of different orders, although only odd-order terms can exist [Smi00; Hec17].
Gaussian optics, considering only first-order terms, was first introduced by Carl Friedrich Gauss [Gau41] and
produces optimal imagery as seen in the theoretical camera models previously described [BW99]. On the contrary,
the inclusion of higher-order terms can predict departures from perfect imaging, referred to as aberrations [Wel91;
PP93; SDHL11]. Monochromatic, aberrations, aberrations that are independent of wavelength, were studied
and classified by Ludwig von Seidel and are often referred to as Seidel aberrations [Sei57; Hec17]. Chromatic
aberrations occur from varying refraction of different wavelengths [Smi00]. Both types are discussed in the
following two segments.

Seidel Aberrations

It has been established that real imaging does not follow Gaussian optics, but departs from perfection. Although
higher-order aberrations exist, focus is laid on Seidel aberrations, as they are the most popular and prevalent in
reality [Smi00]. There exist five different Seidel aberrations, of which each corresponds to one third-order term
and depends on h, s, θ, or a combination of them [Sei57].

Spherical Aberration Spherical aberration denotes the variation of focus with aperture and therefore depends
solely on the intersection point radius s [Hec17]. This aberration occurs because different parallel rays have
different focal lengths depending on how far from the optical axis they hit the aperture [Smi00]. The further away

3https://github.com/quartiq/rayopt (visited on 22nd August 2021)
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2 Background and Related Work

from the center a ray hits the lens, the closer its focal point is to the lens. An exaggerated visualization of this
effect is shown in Figure 2.8. Depending on where the film plane is located, the resulting circle of confusion can
take on different illuminations [Wu+10; Smi00]. Position 1 in Figure 2.8 presents itself as a bright halo with a
darker core, while position 2 is a bright core with a fading halo.

1 2

Figure 2.8: Spherical aberration of a simple lens. Different positions of the film plane result in distinct circles of
confusion.

Comatic Aberration Comatic aberration, usually abbreviated as coma, depends on all three variables and
is therefore a non-symmetric off-axial aberration [PP93]. It denotes the distortion of the image of an off-axis
point [Wu+10]. A lens that suffers from coma focuses rays passing through the lens edges on a different height
than rays passing through the center [Smi00; PP93]. This results in a comet-like shape on the image plane, as
depicted in Figure 2.9. Besides this positive coma, some lenses also exhibit negative coma, where the comet tail
points to the image center [PP93; Hec17].

(a) A comatic lens focuses rays that pass the edge
of the lens differently than center rays.

(b) Coma is visible as an illuminated comet-
shaped cone.

Figure 2.9: Comatic aberration

Field Curvature and Astigmastism Field curvature and astigmatism are related aberrations, as they both
depend on the squares of h and s and are therefore often discussed in unison [Wel91; PP93].

Field curvature on one hand changes the focal point with changing angle, turning the image plane into an
arc, called the Petzval surface [Wel91; Smi00; Hec17]. Consequentially, the more off-axis an object is, the further
away from the image plane its focal point comes to lie and the blurrier its image is. This is depicted in Figure
2.10a.

Astigmatism on the other hand is not symmetrical around the optical axis [PP93]. It occurs because a ray’s
height varies in two directions [SDHL11]. These two orthogonal directions are called tangential and sagittal
planes and are visualized in Figure 2.10b. When astigmatism is present, the tangential and sagittal images do not
coincide and one object point is imaged as two focal lines [Smi00; Hec17]. Depending on where the focal point

8



2 Background and Related Work

lies, the point appears as a line stretched in tangential or sagittal direction. When astigmatism is eliminated and
tangential and sagittal images match, they result in the Petzval surface [PP93].

(a) Due to field curvature, objects have their focal
point on an arc.

optical axis

P

tangential
image

sagittal
image

tangential
plane

sagittal plane

(b) Behavior of a lens that suffers from astigmat-
ism.

Figure 2.10: Field Curvature and Astigmatism

Distortion The last Seidel aberration is distortion and occurs even if all others have been eliminated and in
contrast to the others, does usually not affect sharpness [Hec17]. Instead, straight lines are magnified differently
with different distances from the optical axis, visible in Figure 2.11. If the magnification increases with distance
from the axis, the effect is called pincushion distortion. The opposite effect is called barrel distortion and stems
from decreasing magnification with distance. [PP93; Hec17]

(a) No distortion (b) Pincushion distortion (c) Barrel distortion

Figure 2.11: Different distortions depending on whether magnification increases or decreases with distance from
the center.

Chromatic Aberration

Lens materials not only have different refractive indices, but the index of refraction of a material varies with light
wavelengths [Smi00; WZHX13]. This phenomenon is called dispersion and produces another aberration [PP93].
The so-called chromatic aberration comes in two variations, axial (longitudinal) and lateral (transverse) chromatic
aberration, displayed in Figure 2.12 [Wel91; WZHX13]. Axial chromatic aberration denotes the effect where
different wavelengths have different focal distances, whereas different wavelengths under lateral chromatic aber-
ration are focused at different positions on the focal plane [Wel91]. In photographs, chromatic aberration is most
prevalent along hard transitions between dark and light areas and is visible as colored fringes and blurs [WZHX13;
Hec17].

2.1.3 Bokeh Effect

The term bokeh refers to the appearance of out-of-focus points [Wu+10]. While sometimes unwanted, there is
a visual appeal to it and it can greatly improve realism and depth perception of an image, which is why bokeh
often serves as a stylistic device for photographers [WZHX13]. Achieving bokeh effects boils down to a suitable
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2 Background and Related Work

(a) Axial chromatic aberration (b) Lateral chromatic aberration

Figure 2.12: Chromatic aberration, where rays of different wavelengths are focused on different points.

combination of aperture, focal length and distance to the objects in and out of focus [Nas10]. Bokeh is closely
related to depth of field as both introduce blur to part of the image. Depth of field, however, is only responsible
for the amount of blur, while bokeh focuses more on the blur appearance [WZHX13].

The bokeh effect is fairly hard to notice when the out-of-focus areas are of similar brightness, due to many
similar circles of confusion overlapping and creating a smooth blur [Nas10]. When the scenery contains specular
highlights or distinct light sources, those circles of confusion are prominently highlighted. However, the circle of
confusion does not necessarily form a perfect circle. Firstly, when the aperture is stopped greatly (high f-number,
small opening), the shape of the bokeh represents the shape created by the mechanical aperture blades [Nas10].
While this shape is normally a polygon, it could theoretically be of a more complex shape by using any desired
stencil. Secondly, the location of the light relative to the film influences its shape. Lights at the edges of the
film are sometimes not fully circular or regularly polygonal, but appear elliptic. What is among photographers
sometimes referred to as cat’s eye bokeh or swirly bokeh is caused by the fact that when the aperture is large,
off-axis rays might be further restricted by the lens housing, making the exit pupil non-circular [Vor21].

2.1.4 Other Effects

Besides the aforementioned phenomena, there is a variety of additional effects introduced by lens systems, of
which the most relevant ones are touched upon here.

Vignetting Another unwanted effect of some lens designs is vignetting. It is closely connected to the exit pupil
and refers to the reduction of illumination at the edge of a photograph and is caused by off-axis points having a
smaller cone of light that can pass through the lens, resulting in less energy at far off-axis image points [Kin92;
Smi00; Hec17]. There are cases where vignetting is wanted as an artistic effect and added retrospectively to an
photograph. Stopping down to a small aperture by increasing the f-number reduces vignetting, as a smaller cone
of light offers less variability in illumination [Smi00].

Lens Flare Lens flares are unwanted reflections of light in an optical system, especially prominent with few
bright lights. A light ray from the scene that enters the lens system might not be refracted by a lens element, but
reflected instead. After multiple reflections, the ray can still hit the image plane if enough energy is left, where
it leaves a so-called ghost. Because this ray still passes the aperture, the ghost can take on its shape, similar to
bokeh, hence why some lens flares manifest as polygonal shapes. Although traditionally unwanted and fought
with anti-reflective coatings and lens hoods, lens flares are frequently used in video games or computer-generated
movies to convey realism. [HESL11; LE13]

Aperture Diffraction Light rays do not really travel in straight rays, but rather in wave-like motions [Smi00].
Additionally, every point on a light wave front is also a source for secondary wavelets, which can reinforce or
interfere with each other and form new wave fronts [PP93; Smi00]. In essence, when a light ray is restricted by
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an opening such as an aperture stop, due to diffraction, light can travel in directions other than the original ray’s
direction [Smi00]. This manifests itself as rings of light of decreasing intensity around an object’s image.

2.2 Related Work

Many advances have been made on the topic of realistic camera models in rendering engines, but they can be
roughly divided into two approaches: light ray simulation and polynomial approximation. The first solution to
a realistic camera is to place a lens system in front of the image plane and to simulate rays passing through it.
While tracing rays through all lens elements and calculating the refraction at each element requires additional
time, it can be argued that the improved realism far outshines the reduced performance. Nonetheless, different
sampling techniques were proposed that aim at keeping this speed overhead contained by making sure that each
traced ray makes its way through the lens without getting stuck. More recently, another, more efficiency-focused
approach emerged. By treating a lens as a function and using a polynomial to approximate it, tracing rays through
the lens becomes needless and performance no longer depends on the amount of lens elements. On the downside,
polynomial approximation introduces a certain deviation from the precise solution, and the right balance between
performance and error reduction is needed. This fact is especially interesting for real-time rendering, essentially
trading accuracy for speed to achieve high frame rates [HHH12; LE13]. Nonetheless, ray-traced samples can be
utilized to reduce the approximation error by polynomial fitting, while still preserving the performance.

2.2.1 Ray Simulation Camera Models

In the eighties, the first steps towards a realistic camera model were made by Potmesil and Chakravarty [PC82]
and Cook et al. [CPC84]. They extended the pinhole camera by a thin lens model to achieve focus and depth of
field in a rendered image.

The foundation to all following approaches was then laid in 1995 by Kolb et al. [KMH95]. They propose
a distributed ray tracing algorithm that calculates correct refraction using Snell’s law of refraction at each lens
element, through which they are able to achieve accurate geometry with all Seidel aberrations as well as correct
exposure including vignetting on the film plane. By sampling the exit pupil, which they find through thick lens
approximation, the model requires little additional rendering time compared to simpler camera models and is
therefore deemed quite practical.

In 2011, Steinert et al. [SDHL11] present a generalization to the model of Kolb et al. for Monte Carlo
rendering. They combine spectral Monte Carlo light transport, introduced by Veach [Vea97], with real lens
design data and consider physical laws, which is able to produce all aberrations including chromatic aberration.
By considering Fresnel interaction at every glass surface, lens flares can be additionally achieved. They further
propose a pixel pupil sampling method that stores the passable circle on a pupil plane for each pixel and achieves
a passage rate of about 80%.

At about the same time, another model based on Kolb et al. was proposed by Wu et al. [Wu+10] and later
improved by the same main authors. Similarly to Steinert et al., they consider real lens data and law of refraction
to achieve all Seidel aberrations and propose a sampling method, but do not rely on Monte Carlo for the image
generation. As their focus lies on bokeh, they do not consider reflection of light inside the lens and are therefore
not able to render lens flare. The second research addresses the shortcomings of the first one, namely chromatic
aberration, achieved through a spectral rendering scheme and a dispersive lens model [WZHX13].

The same approach, ray tracing through the lens using the law of refraction, is also used by Pharr et
al. [PJH16], who describe a realistic camera model as part of the implementation description of their renderer
pbrt. They utilize an optimized version of the pupil computation method of Steinert et al., where exit pupils are
calculated for segments along the x axis, which can then be rotated and interpolated to find the exit pupil for any
desired point on the film plane. Further, they describe focusing based on thick-lens approximation, where the film
plane is moved in z direction by an offset found through a modified thin-lens equation.
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A lens flare focused model was published by Hullin et al. [HESL11]. While this model is technically part of
real-time rendering, they argue that omitting certain accelerations would allow for high enough quality to be used
in offline rendering, while still being negligibly fast.

Trying to match a real photography lens more accurately, Wu et al. [WZHL11] introduce a model that
allows for tunable lens properties. It includes variable focal length and field of view, controllable aperture as well
focusing. They further incorporate aspheric lenses, lenses whose profile is not spherical, although only conic
sections, such as ellipsoids, paraboloids or hyperboloids are supported [Smi00]. Lastly, a new rendering pipeline
allows for accommodation of their new model and integration in the rendering engine LuxCoreRender.

Joo et al.’s model [Joo+16] extends aspheric lens support to all lenses. They provide a ray tracing technique
based on numerical root-finding, as such non-conic lenses have no closed-form solution to calculate intersections
of rays with surfaces. Further, they incorporate mechanical lens bokeh imperfections that result from the lens
fabrication process.

2.2.2 Polynomial Camera Models

A completely different approach to integrating real lenses in rendering engines was first introduced in 2012 by
Hullin et al. and coined ‘polynomial optics’ [HHH12]. They argue that tracing rays through lenses is compu-
tationally expensive and either wastes a large part of the ray samples when sampling the outmost lens area or
requires sophisticated sampling and filtering methods. To circumvent these problems, they treat a lens system
as a function that transforms an incoming ray into an outgoing ray and approximate it using polynomials. By
concatenating all lens elements and performing Taylor expansion at the optical axis, their model is able to de-
scribe Seidel aberrations with polynomials of third degree or higher, but struggles with wide-angle lenses as the
error rises towards the image boundaries. Chromatic aberration is also supported, but requires wavelength as an
additional variable in the polynomial. As pointed out by Hullin et al. [HESL11] and later realized by Lee and
Eisemann [LE13], first-order approximation of the polynomial allows for real-time lens flare generation.

A first refinement to polynomial optics was presented by Hanika and Dachsbacher [HD14]. Besides im-
plementing their model in a bidirectional Monte Carlo framework, they introduce a fitting procedure, where the
polynomial is matched with several thousand ray-traced ground truth samples using least squares optimization.
Through this, they are able to reduce the approximation error by 1-2 orders of magnitude compared to Hullin
et al. [HHH12]. However, when the field of view is too wide, the error remains too large.

Motivated by the inability to achieve good results with all lenses, Schrade et al. [SHD16] presented yet
another variation. Instead of using Taylor series, they obtain a sparse high-degree polynomial with a variant of
orthogonal matching pursuit, again by fitting with ray-traced samples. This approach is faster and has a lower
error in almost all cases than the previous method.

A further improvement is promised by Zheng and Zheng [ZZ17a], who find the sparse polynomial through
an adaptive machine learning algorithm that greedily constructs new terms from existing terms. Further, they
introduce light field partition to account for the higher error in off-axis regions. In another paper, Zheng and
Zheng [ZZ17b] follow a more data-driven approach and make use of a neural network that learns the mapping
between incident and outgoing rays from samples.
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As elaborated previously, a multitude of physically-based camera models have been proposed, either tracing rays
through the lens or approximating the lens using polynomials. While many are not suitable for the scope and
objective of this thesis, there are a number of models that need closer inspection and analysis, namely Stein-
ert et al. [SDHL11] and Wu et al. [Wu+10; WZHX13] as candidates of ray simulation models and Schrade et
al. [SHD16] and Zheng and Zheng [ZZ17a] as their polynomial counterparts. The following chapter attempts to
draw a comparison of them and concludes with a model for implementation. To arrive at this decision, various
aspects have to be considered, including render quality, performance, supported effects, supported lens types as
well as the given environment appleseed. A roundup thereof is provided in Table 3.2.

3.1 Model Comparison

Achieving photorealism requires good image quality and very accurate representations of optics and physics. Ray
simulation, being as close as possible to physics by using Snell’s law of refraction, naturally achieves flawless im-
age quality. With polynomial optics, this was not always the case, but tended to improve as the years progressed,
with the recent models showing no quality losses visible for the naked eye [SHD16; ZZ17a]. Nevertheless, it is
important to find the right balance between the polynomial degree and the approximation error, which are indir-
ectly proportional. A too low degree leads to a high and visible error, a too high degree extends the computation
complexity and essentially nullifies the performance benefits of the model.

Ray simulation models require additional computations compared to primitive camera models, which can
diminish rendering performance to a certain extent. Both Steinert et al. [SDHL11] and Wu et al. [Wu+10;
WZHX13], while being very precise about physics and achieving flawless imaging, make no statement about
rendering times. One clue is provided by Kolb et al. [KMH95], on whose model they base on, who found that
of the total image generation time, ‘10% of that time was spent tracing rays through the lens system’ [KMH95,
Sec. 5]. Wu et al. [Wu+10] further point out that because the lens elements are traversed in sequence, heavy
computation can be avoided, because the algorithm does not have to find the closest intersection, which reasons
the aforementioned relatively small increase in computation.

A main performance factor about ray simulation is the amount of lost rays. When rays are spawned by
sampling the outmost lens element, many rays will not make their way out of the lens, as they hit the aperture
stop or the lens housing, especially when the f-stop is high and the aperture therefore small. To combat this,
the exit pupil can be used to sample only the cone of light that can pass the lens. Wu et al. [Wu+10] propose a
two-step algorithm: First, they calculate the marginal rays of this cone through binary search to find the diameter
of the exit pupil. Second, the position of the center of the exit pupil is found by ray tracing. While sampling the
resulting exit pupil is reliable for points in the center of the film, points on the film’s edge suffer from bad passage
rates. The reason is the same as the cause of vignetting, a smaller cone of light from the edges of the film, as
the exit pupil is smaller and distorted by other lens elements [Hec17]. As a solution, Steinert et al. [SDHL11]
compute what they call pixel pupils, the image of the exit pupil on the last lens element for each pixel on the film.
Through this, they achieve about 80% passage rate, although they argue that this number could be optimized to
nearly 100% with more precise pixel pupil calculations. A third approach originates from Pharr et al. [PJH16],
who do not compute the exit pupil for every film point like Steinert et al. [SDHL11], but rather for points along
the x axis that are then interpolated and rotated, which allows for just a fraction of the computation costs. This is
possible, as long as lenses are spherically symmetrical. A comparison of passage rates of the different exit pupil
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calculation approaches is presented in Table 3.1. Steinert et al. [SDHL11] did not use the same exact lens, but a
comparable one and do not specify the number of samples per pixel used to find the exit pupil, hence comparison
should be done cautiously.

Author Approach
Ray Passage Rate[%]

Double-Gauss Lens Fisheye Lens
100mm f/4 10.5mm f/8

- global pupil 36.9 0.5
Wu et al. single exit pupil 92.2 74.4

Steinert et al. pixel pupils - 79.74

Pharr et al. optimized pixel pupils 99.8 88.7

Table 3.1: Comparison of ray passage rates with different sampling methods. The optimized pixel pupils are
computed for 50 points at 2000 samples each.

In polynomial optics, evaluating polynomials is 26 times faster in an evaluation by Hanika and Dachsbacher
than ray tracing through the lens [HD14]. It is however to note, that Hanika and Dachsbacher use a standalone
unit test and a Canon zoom lens with a large number of lens elements for the evaluation. Further, they do not
utilize any sampling method for ray generation, meaning that the passage rate of rays for tracing through the lens
is very low and yields huge efficiency losses [HD14]. While the evaluation of polynomials is inherently faster
and close to thin lens model speeds, the gap to ray simulation is presumably not as large as it might be perceived,
especially when looking at the total rendering time. What is costly however, is generating such polynomials
in the first place [SHD16]. Only the adaptive algorithm by Zheng and Zheng can build a sparse polynomial in
polynomial time, while the orthogonal matching pursuit of Schrade et al. requires an almost exponential number
of evaluations [ZZ17a; SHD16]. Unfortunately, there are no concrete comparisons between the two approaches
that numerically relate them in a realistic testing environment, the performance aspect is therefore hard to as-
sess.

While the goal of all models is the simulation of a physical camera, achievable effects differ. Steinert
et al. [SDHL11] make use of the Monte Carlo light transport simulation with wavelength as additional dimen-
sion to achieve all Seidel aberrations, chromatic aberration as well as lens flare and aperture diffraction. Wu
et al. [WZHX13] lay focus on bokeh rendering and do not consider reflections of light inside the lens system to
create lens flare. Wu et al. [Wu+10] further do not incorporate spectral rendering and can therefore not achieve
chromatic aberrations. As for polynomial optics, Seidel aberrations are achieved with polynomials of third degree
or higher and chromatic aberration requires wavelength as an additional variable [Sei57; HHH12]. Lens flare
rendering can be achieved efficiently using polynomials [HHH12; LE13], but is not directly supported by all
models [HD14; SHD16; ZZ17a].

The traditional way of describing lenses as explained in Figure 2.7 only allows for spheric lens elements,
limiting all simulation models that iterate through this tabular description. For polynomial optics, however, the
insides of a lens are not of importance and treated as a black box, the lens can therefore be of any shape. However,
in all viable approximation models, polynomials are fitted from ray-traced samples and are therefore technically
limited to the abilities of the ray tracer [HD14; SHD16; ZZ17a].

Lastly, varying suitability for implementing the model in a rendering engine can be observed. While Wu et
al. [Wu+10; WZHX13] employ a rather straight forward lens iteration algorithm, Steinert et al. [SDHL11] mainly
rely on the Monte Carlo rendering system to do the heavy lifting for them. Schrade et al. [SHD16] provide an
extensive library implementation, which could create complications trying to implant it into an existing rendering
engine.

4Here, a 10 mm f/8 Muller Fisheye lens was used instead [SDHL11].
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Model
Required for
Good Quality

Performance
Sampling
Method

Missing Effects Lens Types

Steinert et al. -
dependent on

lens size
pixel pupils - spheric

Wu et al. -
dependent on

lens size
exit pupil

C (2010),
LF, D

spheric

Schrade et al.
degree 11

polynomial
fitting: exp

eval.: thin lens
- LF, D any (spheric)

Zheng and Zheng
30− 40 terms,
no degree limit

fitting: poly
eval.: thin lens

- LF, D any (spheric)

Table 3.2: Comparison of models for implementation. C stands for chromatic aberration, LF for lens flare and D
for diffraction.

3.2 Model Selection

The main decision to be made here is the approach to choose, ray simulation or polynomial approximation, as
this is most detrimental for the following implementation. Ray simulation follows real physics, but the additional
computation cost reduces the performance. Additionally, global pupil sampling yields bad ray passage rates,
requiring precomputation of one or many exit pupils. Its opponent, polynomial optics, offers inherent perfect
passage rates and speeds close to the thin lens model, but needs time to build the polynomial and additional
consideration about the desired degree of approximation, as the quality directly depends on it.

As appleseed is a physically-based rendering engine, ray simulation is arguably better suited for implement-
ation as it portrays the scene more accurately than the approximation of this simulation. Additionally, the ray
simulation model allows for closer implementation to the already existing camera models due to said physically-
based nature. Further, the implementation can benefit from already existing classes and methods for steps like
sampling, intersections or refractions. Possibly, there is a certain loss of overall performance that needs to be
accepted, but as no detailed research was conducted about it, exact numbers remain unknown. Polynomial optics,
while having many promising traits, is less suitable for the goal of this thesis to implement a fully parameteriz-
able camera model. A change in focus or focal length changes the whole lens configuration and would require
rebuilding the polynomial from scratch. With the ray simulation model, as no large precomputation is necessary,
such variable parameters are usable without any drawbacks. Due to these reasonings and the fact that polynomial
optics has similar support for optical effects and is in reality also limited to spherical lenses, ray simulation is
pursued from now on.

Inside ray simulation, different models provide different characteristics and strengths. The model of Steinert
et al. [SDHL11], although featuring many photographic phenomena, was deemed not practical and hard to integ-
rate into Monte Carlo frameworks [HD14]. On top, their sampling method later drew criticism because it requires
precomputation and storage for every focus distance and aperture size [SHD16]. An optimized and equally re-
liable sampling variation is the approach by Pharr et al. [PJH16]. On the opposite, Wu et al. [Wu+10] sample a
single exit pupil, which requires virtually no precomputation, but is not as precise as Steinert et al. [SDHL11].
Nonetheless, the sampling approach of Wu et al. [Wu+10] will be pursued in this thesis for two main reasons:
First, computation is much more efficient and the ray passage rate is only slightly below the others. Second, by
computing only one exit pupil, it tends to be larger than the actual exit pupil, especially in edge regions. This
allows for preservation of some lens effects that are erased with more precise exit pupil calculations, such as
vignetting. For a similar reason, different bokeh shapes, depending on the film location, appear more naturally
and increase realism. Concerning the algorithm to trace a ray through the lens, all ray simulation models utilize
the algorithm by Kolb et al. [KMH95], whose approach will be used as well in this thesis.
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The main goal of this thesis is the implementation of a physically-based multi-lens camera model in the open-
source renderer appleseed. As reasoned previously, a ray simulation model is the more sensible choice within the
scope of this thesis as well as from a maintainability point of view. Wu et al. serve as a basis for the implementation
of the pupil calculation and the main sequential tracing algorithm [Wu+10] and provide the foundation for tunable
lens properties [WZHL11], while Kolb et al. [KMH95] lay the foundation for the tracing algorithm. The complete
source code is available on GitHub5 and will be merged into appleseed’s repository6.

4.1 Lens Specification

As a very first step, the lens specification file set by the user is read into the system. It follows the notation of
Figure 2.7, but the V-number is dropped, as it would only be relevant when considering dispersion. If the file
consists of valid lines of radius, thickness, index of refraction and diameter separated by spaces, the lens is stored
as a standard library vector. Next, the lens specification is modified according to the inputs of the user.

Focal Length and Field of View These two properties are inversely proportional and either can be modified
to achieve the same result. Most available lenses have a fixed focal length and field of view, the only exception
are zoom lenses with moving lens elements to accommodate for the change of focal length. A simpler way of
changing a lens prescription to any desired focal length, however, is scaling each lens element by the ratio of the
new focal length and the original focal length [Smi92; WZHL11]. A 50mm lens that is desired to have a focal
length of 100mm therefore needs to be doubled in size. Thick lens approximation based on Pharr et al. [PJH16]
is used to determine the focal length of the lens. For that, a horizontal ray is created and traced through the lens.
Next, the intersection of the ray with the optical axis yields the focal point, while the intersection of the ray with
the original ray determines the location of the principal plane [PJH16]. The difference between the focal point
and the principal plane results in the focal length, like previously shown in the discussion about the thick lens
model in Section 2.1.1. Lastly, each lens element’s radius, thickness and diameter is multiplied by the ratio of the
user input focal length and lens focal length.

Aperture Size and Shape A photographer on one hand measures his aperture size as an f-number or f-stop.
It is given by the ratio of the focal length and aperture diameter of the lens [Hec17]. A change in f-number can
therefore be achieved by modifying the diameter of the aperture while leaving the focal length unchanged. As the
focal length is known from the previous step, the size of the aperture can be changed immediately if specified by
the user.

On the other hand, the user can modify the shape of the aperture to either reflect the mechanical blades
of a real aperture or to achieve artistic effects by specifying an arbitrary aperture shape. This customization
feature already exists in appleseed’s thin lens camera and is carried over accordingly [Bea+19]. To achieve a
polygonal aperture, a number of aperture blades as well as a tilt angle is specifiable. In the other case, an image
is set, which serves as a map to build the aperture shape based on the luminance, such as a white star on a black
background.

5https://github.com/JaanWilli/appleseed/tree/multilens-camera (visited on 20th August 2021)
6https://github.com/appleseedhq/appleseed (visited on 20th August 2021)
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Focus Focusing at a certain point in object space can be achieved by moving the image plane closer to the lens
or further away. This needs to be done after changing the focal length and requires a recomputation each time the
lens configuration is changed. It is implemented following the approach by Pharr et al. [PJH16] using a modified
thin lens formula

1

f
=

1

p− z
+

1

z′ − p′

=
1

z′ − p′
− 1

z − p
, (4.1)

where the object distance s is now the distance from the object plane z to the primary principal plane p and the
image distance s′ is the distance between the secondary principal plane p′ and film plane z′. The principal planes
are found as described above. To achieve focus, the two focal points should now come to lie on the film plane z′

and the desired object in object space at depth z. The equation therefore needs to be translated by a distance δ,
such that
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By solving for δ, we arrive at
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)
2
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and δ is added to the last lens element’s thickness, which defines the distance to the film plane. As δ has two
solutions, the smaller of the two is chosen for convenience. [PJH16]

4.2 Pupil Calculation

As established in Chapter 2, the entrance and exit pupil are the images of the aperture and a ray can only pass
the aperture if it also passes both pupils. It was further discussed in Chapter 3 that sampling the exit pupil is
required, as global sampling would result in inferior passage rates. Wu et al. [Wu+10] compute the exit pupil with
a two-step algorithm where first, the marginal ray and second, the center of the exit pupil is found through ray
tracing.

The first step is depicted in Algorithm 4.1 and visualized in Figure 4.1. It starts off by defining a minimum
and a maximum ray from the center of the film plane to the center and the edge of the last lens element, respect-
ively, denoted as Rmin and Rmax. Then, in a binary search fashion, the marginal ray is approximated iteratively
until the the cosine similarity

Rmind
·Rmaxd

‖Rmind
‖‖Rmaxd

‖
(4.4)

between the minimum and maximum ray direction is close to 1, signifying exact similarity [Wu+10]. For the im-
plementation, 1× 10−12 is chosen as the deviation threshold, which is reached after about 20 iterations. This way,
nearly perfect ray passage rates are achieved with lenses that keep an equal exit pupil for all film points.

Algorithm 4.2 and Figure 4.2 show the second part of the algorithm, in which the center of the exit pupil is
found. This part starts off at the center of the aperture stop P0. From there, a ray is created towards a paraxial
point P1 on the next lens element. This ray is then traced through the remainder of the lens until it leaves the lens.
Lastly, the ray is intersected with the optical axis and the intersection point denotes the center of the exit pupil. For
the implementation, P1 cannot lie on the optical axis as the ray would then be identical to the optical axis and not
produce an intersection. Too much distance to the optical axis, however, reduces the accuracy of the intersection
point, P1 is therefore chosen to be 1× 10−8 of the lens radius away from the optical axis. [Wu+10]

With the center of the exit pupil found, the radius of the pupil can be computed from the marginal ray and
is stored together with the center point. The entrance pupil is found following the same schema on the opposite
side of the lens, but it is only needed in case a ray should be traced from the scene to the film.
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Algorithm 4.1 Finding the marginal ray
1: Rmin ← ray from P0 to Pmin

2: Rmax ← ray from P0 to Pmax

3: R← Rmax

4: while 1 - cos_sim(Rmin, Rmax) ≥ ε do
5: trace R through the lens
6: if successful then
7: Rmin = R
8: else
9: Rmax = R

10: R = (Rmin +Rmax)/2

11: R is marginal ray and determines exit pupil
radius

film plane

P0

Pmin

Pmax

R
(0)
max

R
(0)
min

R
(1)
max

R
(1)
min

R
(2)
max

Figure 4.1: Finding the marginal ray from the
center of the film plane.

Algorithm 4.2 Finding the exit pupil center
1: R← ray from P0 to P1

2: forward trace R through the lens
3: intersect R with optical axis
4: intersection is exit pupil center

P0

P1

pupil center

R
aperture

Figure 4.2: Finding the center of the exit pupil.

4.3 Sequential Ray Tracing Through the Lens

At the core of the multi-lens model lies the algorithm to trace a ray through the lens, starting at the film plane,
as described in Algorithm 4.3. It was originally proposed by Kolb et al. [KMH95] and is used by all models
that rely on ray tracing. In essence, once a new point on the exit pupil is sampled and the starting ray is defined,
the container of the lens elements is iterated and for each lens element, the intersection between the ray and
the current element is calculated. Appleseed offers already implemented intersection methods, from which the
method to intersect a ray with a sphere is used [Bea+19]. As this intersection generally has two solutions, entering
and exiting the sphere, the direction of the ray and the curvature of the lens need to be considered to choose the
right solution. If a valid intersection exists and lies within the opening of the lens element, the ray is refracted
using Snell’s law of refraction. At the end of the algorithm, the ray points in a certain direction into the scene and
is handed back to the renderer for the actual ray tracing in the scene. If, however, the ray could not be refracted
or the intersection lies outside the lens opening, the algorithm is stopped prematurely and the ray is considered
dead. The most important steps along the algorithm are described in detail below.

4.3.1 Pupil Sampling

Once the exit pupil is computed, it can be sampled for points to direct rays at. This method is adopted from
the existing implementation in the thin lens camera and in the general case, samples a unit disk with a uniform
probability density, which is then transformed to a point on the exit pupil [Bea+19]. In the case that a custom
aperture shape is desired, the thin lens camera samples the given shape instead of a unit disk, such that all rays
are directed at this shape on the lens. As the multi-lens camera does not require this workaround and inherently
takes the shape into account through a real aperture, the shape-dependent sampling is not needed and the whole
exit pupil is sampled in any case.
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Algorithm 4.3 Sequential Ray Tracing Algorithm
1: R← ray from sample point on film plane to sample point on exit pupil
2: for each lens element do
3: P0 ← intersect R with lens element
4: if P0 is not inside the element then
5: end the algorithm
6: Rorigin ← P0

7: W ← refract R using the law of refraction
8: if refraction failed then
9: end the algorithm

10: Rdirection ←W

11: return R

4.3.2 Intersection Validation

Looping through the lens elements, the intersection between the ray and the element is computed first. In the
general case, the Pythagoras theorem is used to determine whether the intersection point lies within the element’s
diameter. For the aperture, however, other calculations are required in case it is not round. As elaborated in
Section 4.1, the shape of the aperture can be controlled via a blade number or an aperture map. Internally,
this does not affect the lens specification, but it is dynamically considered in the algorithm. If the aperture is
polygonal, a ray casting algorithm by Franklin [Fra03] is employed that bases on the Jordan curve theorem. It
generates a horizontal ray starting at the intersection point and counts how many times this ray intersects an edge
of the polygon. An odd number of intersections signifies that the point lies within the polygon, an even number
determines the point to be on the outside. This algorithm works well for many polygons, including concave ones
or polygons with holes and only suffers in precision for points very close to or on the polygon’s edge, which
should not be of vast consequences in this application [Fra03]. For any other custom aperture shape, the same ray
casting algorithm could be used as well, but would require finding the coordinates along the edges of the shape.
Instead, an importance sampler is utilized, intended for the thin lens camera to selectively sample points, that is
built from the aperture map on initialization [Bea+19]. With it, the probability density of the intersection point on
the aperture map is found. If it is nonzero, the point lies within the illuminated part of the map and therefore can
successfully intersect the aperture.

In both the polygon and the arbitrary shape case, the simple Pythagoras check is done first to omit the sub-
sequent code in case the intersection point is outside the round aperture stop. This certainly improves readability
and facilitates debugging, but also positively impacts rendering performance.

4.3.3 Refraction

To use Snell’s law of refraction in Algorithm 4.3, it first needs to be transformed into

T =
nI
nT

I +
(
nI
nT

cos θI − cos θT

)
N. (4.5)

The cosines of the angles of incidence and refraction are then inferred from the law as

cos θI = I · N, cos θT =

√
1−

(
nI
nT

)2

(1− cos2 θI). (4.6)

Combining Equations 4.5 and 4.6 allows for finding the refracted ray T from the incoming ray I, the surface
normal N and the ration of indices of refraction nI/nT . As this calculation was already present in appleseed as
part of the vector implementation, it could be used without any change required. [Wu+10; PJH16; Bea+19]
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A correct implementation of a multi-lens camera model is able to reflect the optical properties of physical cameras
discussed in Chapter 2. This chapter aims at showing the capabilities of the implemented model by reproducing
said properties using suitable lenses and appropriate scenes. Further, unobtainable effects are named and their
unachievability is reasoned.

5.1 Achieved Effects

Many effects and realistic camera properties are made achievable by the implemented multi-lens camera model.
Firstly, the model allows for changing lens variables in a way a photographer can do on a real lens and even beyond
what the lens is physically capable of. Secondly, many aberrations and effects originating from the imperfection
of a multi-lens setup are accurately reproducible. To accomplish this, scenes that isolate certain effects were
designed in Blender 2.87 and exported to appleseed using its Blender plugin blenderseed8. They are contributed
as test scenes to appleseed’s testing environment. In other cases, existing test scenes from appleseed’s repository
could be used. The scenes were then rendered using the multi-lens camera and a suitable lens that suffers from
the image defect at hand. The design of all lenses used can be found in Appendix A.

5.1.1 Variable Lens Properties

Usability of the implemented camera model comes from the variety of lens properties that can be changed from
the predefined value in the lens description file, namely focal length, f-number and focus distance. Only this vari-
ability later allows for comparability, as lenses can be made matching, for example in terms of focal length. Figure
5.1 shows a compilation of the same kangaroo scene rendered with a double-Gauss lens by Tronnier [Tro54] using
different lens settings. The signs are between 1m and 2m away from the camera with 0.2m of space between
each. In Figure 5.1a, where the aperture is wide open and the frontmost sign is in focus, a degradation of sharpness
can be observed further in the back, as well as a vignetting effect. Increasing the f-number and therefore closing
the aperture like in Figure 5.1b eases the narrow depth of field and shows all signs in good focus. Increasing the
focal length from 35mm to 55mm or 75mm like in Figure 5.1d and 5.1c narrows the field of view and lowers
the depth perception. Again, stopping down the aperture like in Figure 5.1e reduces the amount of blur, whereas
a focus distance beyond the scene in Figure 5.1f renders all signs in strong blur.

5.1.2 Aberrations

Section 2.1.2 went into detail about aberrations, their physical causes and their consequences. Assuming that
the multi-lens camera model accurately models real physics, these aberrations should be visible in some images
rendered using this camera model. Unfortunately, in reality, aberrations usually appear in a blended fashion rather
than individually. Further, lens manufacturers are constantly trying to combat these imperfections by coming
up with new lens designs. By keeping the scenes as simplistic as possible and using older or simpler lenses,
which tend to have less aberration corrections, suitable scene and lens combinations can nonetheless be found to
showcase the correctness of a given aberration.

7https://www.blender.org (visited on 5th May 2021)
8https://github.com/appleseedhq/blenderseed (visited on 16th July 2021)
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(a) 35mm, f/1, focus at 1m (b) 35mm, f/16, focus at 1m (c) 55mm, f/1, focus at 2m

(d) 75mm, f/1, focus at 1.4m (e) 75mm, f/5.6, focus at 1m (f) 75mm, f/1, focus at 4m

Figure 5.1: The kangaroo scene rendered with the same double-Gauss lens, but set to different variables. The
signs in the scene are equally spaced, with the first being 1m and the last 2m away from the camera.

Spherical Aberration Spherical aberration describes the effect where parallel object rays do not focus in one
focal point and different circles of confusion are created when focusing at different distances. Figure 5.2 shows
the same small light source at 1m distance rendered with the Tronnier double-Gauss lens [Tro54] using five
different focus distances, 0.8m, 0.9m, 1m, 1.2m and 1.4m. Focusing closer than 1m results in a dark core with
bright halo. Focus distances slightly beyond 1m turn the light into a bright center with a dark ring around, then at
more distance, a dark core starts to appear in the center. It is further noticeable that focus distances further away
from the actual distance result in larger circles of confusion that are less bright, as the light intensity is distributed
among a larger area.

Figure 5.2: Circles of confusion of a light source at 1m distance as a result of spherical aberration. Rendered
using a double-Gauss lens at 200mm, f/1, and focal distances of, from left to right, 0.8m, 0.9m,
1m, 1.2m and 1.4m.

Comatic Aberration Figure 5.3 shows light spots rendered using a double-Gauss lens [Lai95, p. 75] and
a wide angle lens [Ito80] that suffer from coma. The double-Gauss lens has been modified to feature a larger
diameter, such that the effect is more prominent. The renders are cropped to display the top right corner, the light
on the bottom left therefore lies in the center of the image. Both renders show the coma-typical comet distortion,
although the comets of Figure 5.3a are further affected by the extreme exit pupil distortion that stems from the
increase in diameter of the lens. It features negative coma, comet tails towards the center, whereas Figure 5.3b
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has positive coma that distorts outwards. The magnitude of the comet shape is determined by the distance of the
light spot to the center of the image, where no distortion is present.

(a) Modified double-Gauss lens (b) Wide angle lens

Figure 5.3: Coma distorts small light sources either towards the center of the image (bottom left) or outwards.

Astigmatism Astigmatism can occur in two forms, tangential astigmatism or sagittal astigmatism, depending
on whether the tangential or sagittal image is focused on. In tangential astigmatism, when the film plane is
located at the sagittal image, a distortion happens in the direction of the optical axis, or in other words, in rays
from the image center. Placing the film plane at the tangential image results in sagittal astigmatism and manifests
itself as distortion perpendicular to rays from the image center. A suitable way to show astigmatism, is therefore
the use of a cartwheel scene, as the spokes and the rims are optimal to prove sagittal and tangential astigmatism,
respectively. Figure 5.4 shows such a scene rendered using a Canon lens [Oga96] without astigmatism as reference
and a widened double-Gauss lens [Lai95, p. 75] with astigmatism. As only the circular rims are blurred in Figure
5.4b, while the spokes are almost perfectly sharp, this lens suffers from tangential astigmatism.

(a) Canon zoom lens (b) Modified double-Gauss lens

Figure 5.4: Tangential astigmatism blurs only the rims of the cartwheel. The effect diminishes towards the center
of the image on the bottom left corner.

Field Curvature Field curvature is present in every lens, but most, if not all, lenses virtually eliminate it.
By increasing the diameter of the lens like in Figure 5.5a or by resorting to simple single-element lenses like in
Figure 5.5b, the effect can nonetheless be shown. As the image plane is a slight arc, blur starts to appear towards
the edges of the image, even though the chess board is in perfect focus. Figure 5.5c, where the focal length is
increased, shows less field curvature, as the range of ray angles is more narrow and the extent of the Petzval
surface is more limited.
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(a) 50mm modified double-Gauss
lens

(b) 50mm biconvex lens (c) 100mm biconvex lens

Figure 5.5: The chessboard scene shows the blur caused by field curvature of different lenses.

Distortion The last of the five Seidel aberrations is the effect, that straight lines in the scene are portrayed as
curves in the image. All renders in Figure 5.6 were created with equal focal length at a high f-number to combat
other aberrations and get sharp lines. Figure 5.6a shows a scene of a grid of equidistant white lines rendered
using a pinhole camera. In Figure 5.6b, a biconvex lens [SHD16] creates a pincushion distortion, changing lines
to convex arcs, while in Figure 5.6c, a fisheye lens [Miz07] produces a concave barrel distortion.

(a) Pinhole camera (b) Biconvex lens (c) Fisheye lens

Figure 5.6: A grid of lines rendered with different lenses at the same focal length. While the pinhole camera does
not distort the image, the others create a pincushion and barrel distortion, respectively.

5.1.3 Vignetting

The Tessar lens by Brendel [Bre58] introduces strong vignetting at low f-numbers, as visible in Figure 5.7. At
f/1 for instance, a dark taint can be observed in the periphery of the image. At f/4, the effect is reduced and at
f/8, only the corners are slightly tainted. This is in line with the optical explanation of vignetting, where a large
aperture leaves more room for rays of off-axis points to be limited by the rims of lens elements, whereas a small
aperture leads to a more consistent exit pupil size regardless of the film position. The fact that vignette is still
present even at very small apertures is attributable to this specific lens being at its limit of feasible focal lengths.
If the focal length was any smaller and the film plane moved closer to the camera, then off-axis areas would not
be reachable by any light and stay completely black. This cannot be prevented by increasing the f-number, as it
only makes the transition less fluid, but would require an increased focal length.
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(a) f/1 (b) f/4 (c) f/8

Figure 5.7: Influence of the f-number on vignetting.

5.2 Unachieved Effects

There are certain imperfections and effects that cannot be simulated with the implemented model, namely chro-
matic aberration, lens flare and aperture diffraction. Although their incorporation is not impossible, they lie
outside the scope of this implementation due to high implementation complexity and increased computational
needs.

Chromatic aberration requires light refraction based on wavelengths. For the implementation, each ray there-
fore needs a certain wavelength associated, that is then considered in refraction computation. As the architecture
of appleseed merely expects the camera models to spawn rays based on pixel inputs, making wavelength access-
ible inside the camera would require major refactorings with large impacts on many classes, and is therefore not
supported by the current model.

Further, neither reflections, nor ray direction changes are supported inside the lens, both of which would be
needed to render lens flare. As one ray can be reflected multiple times and branch into multiple lower intensity
rays, a straightforward implementation is impossible for performance reasons and a more sophisticated algorithm
is required, which deviates from the scope of this thesis.

Lastly, aperture diffraction was similarly deemed out of scope and of too low impact for the high complexity,
which is why it is ignored in the model.
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In this section, the implementation of the multi-lens camera in appleseed is analyzed in detail and compared to the
commonly used implementations of the pinhole and thin lens camera. Firstly, a comparison of features is drawn
and image quality and realism, which base on those features, are explained and interpreted. In a following part,
the performance of the implementation, the main handicap of the multi-lens camera, is closely inspected, both in
relation to other camera models and different lens complexities.

6.1 Feature Range

By presenting achievable and unachievable effects in Chapter 5, an implicit range of features of the multi-lens
implementation has already been established. A condensed overview thereof, together with an overview over
other camera models is presented in Table 6.1. While the pinhole camera is limited to setting a focal length to
adjust the image section, the thin lens camera offers depth of field and selective focus through an aperture that
is adjustable in both size and shape. The multi-lens camera, as proven previously, additionally has third-order
aberrations, spherical aberration, coma, astigmatism, field curvature and distortion, as well as vignetting in its
repertory, but is unable to produce chromatic aberration, lens flare and aperture diffraction. Besides a spherical
and an orthographic camera, which have no relevancy in this thesis, appleseed lastly offers a fisheye camera that
can create barrel distortions in a similar fashion as the multi-lens camera. There, the user can choose different
types of projection, which offers versatility, but as its underlying model is the pinhole camera and it merely
distorts ray directions, its feature range is equally narrow as the pinhole camera and therefore not comparable to
the multi-lens camera.

While the pinhole and thin lens camera are consequentially very limited in effects beyond depth of field and
fall behind the multi-lens camera, appleseed offers various effects as post-processing stages, most importantly for
this thesis chromatic aberration and vignetting. While the multi-lens camera cannot produce chromatic aberration
and therefore has to rely on this post-process, it comes with natural vignetting, which has the potential to be much
more nuanced and lens-specific than post-processing vignette.

6.2 Realism

Appleseed’s thin lens camera model has been established to be capable of producing depth of field, which can be
argued to yield a basic bokeh effect when the focus lies much closer than the object. However, because realistic
bokeh is closely related to the optical aberrations, a multi-lens camera model is required to achieve photorealistic
bokeh effects. Figure 6.1 shows a scene of many small light sources at different distances to the camera, which
lets the dots appear in different sizes. In both renders, the focus distance is set to a small number much closer
to the camera than the lights are, such that they appear out of focus. Figure 6.1a was rendered with the thin lens
camera, Figure 6.1b with a double-Gauss lens [Tro54] that was tweaked until the bokeh sizes matched, as different
lenses yield different bokeh intensities. Looking at the thin lens render, blurred circles of light can be observed,
where the brightness is dependent on the proximity of the light source. Comparing it to the double-Gauss render,
the used lens introduces bokeh variation and optical aberrations that influence the perception of the bokeh. There,
the bokeh is no longer perfectly circular and of equal size, but takes on various shapes and sizes. This is due to
the exit pupil neither being circular nor of equal size for all film points. Shape-wise, center bokeh is comparable
to the thin lens, as only the aperture determines the cone of passable light. Lights far off-center, however, appear
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Pinhole Camera Thin Lens Camera Fisheye Camera Multi-Lens Camera

Focal Length 3 3 3 3

Depth of Field 7 3 7 3

Focus 7 3 7 3

Aperture Size and Shape 7 3 7 3

Spherical Aberration 7 7 7 3

Coma 7 7 7 3

Astigmatism 7 7 7 3

Field Curvature 7 7 7 3

Distortion 7 7 3 3

Chromatic Aberration 7* 7* 7* 7*

Vignetting 7* 7* 7* 3

Lens Flare 7 7 7 7

Aperture Diffraction 7 7 7 7

* Available as a post-processing stage.

Table 6.1: Overview of available properties and achievable effects of camera models in appleseed.

elliptical due to the lens housing being an additional ray-limiting factor. On top, aberrations impact the bokeh
further, in this render especially spherical aberration. It manifests itself as bright rings around the bokeh, best
visible in the center. In peripheral areas, the effect is diminished, because the region where light hits the aperture
is smaller.

(a) Thin lens camera (b) Double-Gauss lens

Figure 6.1: Comparison of bokeh effects in a scene of different sized out of focus light sources.

The thin lens model in appleseed further allows for specification of a custom aperture shape, in which lens
points are then sampled. On the contrast, the implemented multi-lens model consists of a real aperture that can
be modified in shape and size, the workaround of sampling a specific area is therefore not necessary. To show
the differences, Figure 6.2 opposes the rendering results of different aperture shapes of the thin lens camera and a
double-Gauss lens [Tro54]. The thin lens camera in Figure 6.2a and 6.2c changes the circular blur spots into other
shapes, which certainly gives an artistic look, but cannot convey photographic realism. To achieve it, variation of
the bokeh depending on the relative location is required. Looking at Figure 6.2b, one can see perfectly hexagonal
shapes in the center, that further outwards lose their shape due to no longer being restricted by only the aperture,
but by other lens elements. Similar to Figure 6.1b, optical aberrations are visible as well. Figure 6.2d shows
the same behavior using a star-shaped aperture, but to a lower extent, as the star pattern reduces the bokeh effect
twofold. On one hand, the star being smaller than the hexagon acts like a higher f-number and reduces bokeh.
On the other hand, spherical aberration and a change in shape is less noticeable, as it mostly impacts the edges of
the bokeh shape. On closer inspection, distorted stars with shorter rays are observable in the corners of the image
nonetheless. In both multi-lens renders, a reduction in brightness compared to their thin lens counterparts can be
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observed. This is attributed to the implementation, where many rays end at the aperture due to its shape, and hence
cannot contribute to the illumination calculation. In the thin lens case, the rays are compacted to a certain shape
and the same number of rays as with a circular aperture reaches the scene, achieving higher brightness.

(a) Thin lens camera with pentagonal aperture (b) Double-Gauss lens with pentagonal aperture

(c) Thin lens camera with a star-shaped aperture (d) Double-Gauss lens with a star-shaped aperture

Figure 6.2: Comparison of bokeh shapes between the thin lens and multi-lens camera in a scene of different sized
light sources.

For further comparison of the two approaches to achieve custom aperture shapes, both were implemented
in the multi-lens camera and are compared in Figure 6.3. Figure 6.3a contains the result of shape-dependent
sampling following the thin lens approach, whereas Figure 6.3b was rendered with the real aperture shape consid-
eration described in Section 4.3.2. Both images were rendered using a heart-shaped aperture on a double-Gauss
lens [Tro54]. Comparing the two, the afore-reasoned difference in brightness is visible again. Further, looking
at the magnified corner section, certain differences can be observed. Firstly, shape-dependent sampling yields a
more uniformly bright bokeh, whereas the shape-dependent aperture produces spherical aberration and illumin-
ates the bokeh outlines. Secondly, considering the real shape while ray tracing results in more shape variation
than the sampling approach, visible as slightly squeezed and distorted hearts in Figure 6.3b.

Besides bokeh as a visualization of a variety of imperfections that lack in other camera models, vignetting
is an additional effect that previous models cannot inherently achieve. As vignetting can be a stylistic device,
appleseed offers it as a post-processing stage and allows for easy adjustment of the vignette intensity and the
anisotropy, the degree of deviation from perfectly circular vignetting. To show the differences of this post-process
to real lens vignetting, white squares were rendered and are shown in Figure 6.4. Even though the post-processing
vignette intensity was tried to match the vignette of the two real lenses closely, certain differences, mainly con-
cerning the light falloff rate, can be observed. On one hand, the Tessar lens [Bre58] in Figure 6.4a has a smaller
bright center and darker edges than its post-process counterpart in Figure 6.4b. On the other hand, while the
double-Gauss lens by Hudson [Hud68] in Figure 6.4c and the post-process in Figure 6.4d have similarly bright
cores, brightness falls off slower in the double-Gauss image, but reaches a higher darkness in the corners. Post-
processing vignette, indifferent of intensity, always features equal falloff rates, visible when comparing Figures
6.4b and 6.4d. Different real lenses, in contrast, have different light falloff at the edges, also depending on focal
length and f-number. Consequentially, the multi-lens camera offers advantages in terms of vignette quality by
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(a) Shape-dependent sampling (b) Shape-dependent aperture

Figure 6.3: Comparison of two implementations to achieve custom bokeh shapes. On the left, the exit pupil is
sampled in a heart shape like the thin lens implementation does it. On the right, the shape is considered
when intersecting rays with the aperture.

providing a more realistic and diverse effect. While the post-process offers more customizability, the multi-lens
camera ties a distinct vignette to a specific lens at a certain setting. On top, handling post-processing becomes
superfluous with the new model.

(a) f/4 Tessar lens (b) Thin lens camera
with vignette post-
processing at 0.6
intensity.

(c) f/4 double-Gauss lens (d) Thin lens camera
with vignette post-
processing at 0.8
intensity.

Figure 6.4: Comparison of native vignetting and vignette added through a post-processing step.

6.3 Performance

The camera’s performance is a critical measure and can be a deciding factor for appeal and the willingness to
use it. Table 6.2 therefore compares render times of different scenes, camera models and lenses. All scenes
stem from appleseed’s test scene repository [Bea+19]. They were rendered in appleseed studio on an 8-core
Intel Core i7-9700 at 3GHz and 16GB DDR4-RAM at 2400MHz with one pass at 100 samples per pixel.
Besides appleseed’s already existing pinhole and thin lens camera, the following lenses were used in the multi-
lens camera: A lens consisting of only an aperture as a reference point, a single biconvex lens [Inc21], a Tessar
lens by Brendel [Bre58], two double-Gauss lenses by Tronnier [Tro54] and Angenieux [Ang55], two wide angle
lenses by Itoh [Ito80] and Ikemori [Ike82] and a Canon zoom lens by Ogawa [Oga96]. The resolution of each
render is 512× 512, the focal length 50mm and, where applicable, f/4 is chosen as aperture size. The numbers
for each scene represent the average render time in seconds over three runs. The individual times as well as all
rendering output images can be found in Appendices B and C. For the fluffy cornell box scene, a BVH tree is
built on the first render after loading the scene, which was excluded from the measurements. Although all scenes
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were rendered with the same settings, great time differences can be observed, which attribute to the fact that the
fluffy cornell box scene, for example, requires much more ray computations in the scene than the kangaroo scene
does. In the flower scene, while the flower itself requires heavier computation, its black surroundings do not and
are processed comparatively much faster. Not only in terms of the scene do render times differ, the choice of
camera is also influential. The pinhole camera, being the simplest model, is fastest overall, closely followed by
the thin lens camera. The multi-lens camera is slowest, as it requires additional time for tracing each ray through
the lens. Nr signifies the number of refractions, intersections with lens elements other than the aperture. Aperture
with zero refractions serves as a base case, as it does not feature any lens piece, but solely an aperture. To achieve
similar sharpness as other renders and prevent rays in additional directions, the aperture diameter was set at a very
small value, such that it resembles the pinhole camera in design, but uses the multi-lens implementation for ray
generation. Looking at the speed of this base case in the three scenes, render times very similar to the pinhole
and thin lens camera can be observed, which shows that precomputations as well as recurring operations, such as
exit pupil sampling and aperture intersection computation of the multi-lens camera are comparable in complexity
to the pinhole and thin lens camera. Thus, the render time of the multi-lens camera and therefore the overhead
over the other models is almost solely dependent on the number of lens elements the lens consists of, or more
precisely, the number of refractions that need to be computed.

Kangaroo Scene Flower Scene Fluffy Box Scene

Camera Lens Nr Render Time [s] Render Time [s] Render Time [s]

Pinhole - - 5.90 17.10 110.17
Thin Lens Thin Lens 1 6.37 17.30 110.84

Multi-Lens

Aperture 0 6.40 17.35 110.61
Biconvex 2 7.75 20.31 116.38
Tessar 7 10.09 22.03 110.80
Tronnier 10 12.34 24.84 116.49
Angenieux 14 14.56 26.01 115.82
Itoh 18 16.85 28.47 120.81
Ikemori 25 21.09 31.17 127.01
Canon 33 28.15 37.75 133.19

Table 6.2: Average render times over three runs of different scenes at 100 samples per pixel using the pinhole
camera, thin lens camera and multi-lens camera. The focal length is always 50mm, the scenes are
focused and the thin lens and multi-lens camera are set to f/4. The multi-lens model is tested using an
assortment of different lenses of different complexity, indicated by their number of refractions Nr.

6.3.1 Multi-Lens Overhead

Figure 6.5 plots the time difference to the pinhole camera for each multi-lens camera lens, indicated by its number
of refractions, and each scene. Overall, a rough linearity and the aforementioned strong correlation between
refractions and time can be observed. To verify the linearity, Figure 6.6 visualizes the time overhead divided by
the number of refractions. For the most part, a constant overhead of about 0.6 s per refraction can be observed,
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validating that the time overhead is almost purely based on the number of refractions. Apart from that, two outliers
are visible in the two illustrations.

First, the Tessar lens (7 refractions) and the Angenieux lens (14 refractions) are exceptionally fast, especially
in the fluffy cornell box scene. This behavior can be attributed to the fact that both lenses suffer from vignetting,
best visible in the kangaroo scene renders in Appendix C. Towards the corners of the image, an increasing per-
centage of rays are stopped somewhere inside the lens, which reduces the overall number of refractions that need
to be computed and in turn benefits the render time. As the illumination computation complexity per ray is highest
in the fluffy cornell box, fewer rays due to vignetting reduce the render time the most. In the other two scenes,
corner rays are shot into the nowhere anyways, vignetting therefore has only a minor impact. By modifying the
f-number and reducing vignetting, one could diminish this time deviation, however changing the f-number can
impact the overall performance. Concretely, a large aperture has a worse ray passage rate for the same reason that
is responsible for vignetting, difference in exit pupil size depending on film location. With a small aperture on the
contrary, the exit pupil size remains equal for all points on the film, increasing the ray passage rate and, hence,
slightly increases render time.

Second, the recorded times of the biconvex lens with two refractions are comparatively high, most noticeable
in Figure 6.6 in the fluffy cornell box scene. While the low denominator certainly introduces more fluctuation,
another factor can be found responsible. Analyzing the amount of dead rays, it was found that this lens, due
to its extreme simplicity, has a ray passage rate of virtually 100%. All other, more complex lenses show lower
percentages due to only a single exit pupil being calculated to sample. While the percentage difference is small,
the additional rays from the biconvex lens require slightly more computations in the scene, hence raising the total
time marginally. This effect is, for the same reason as the vignette outliers, most prominent in the complex cornell
box scene.
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Figure 6.5: Time overhead of different multi-lens camera lenses over the pinhole camera. Lenses are represented
by their number of refractions Nr.
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6.3.2 Custom Aperture Shape

Modifying the shape of the aperture not only changes the look of bokeh, but also impacts the total render time.
Table 6.3 records render times and the ray passage rate of the three scenes using different aperture shapes on
the biconvex lens [Inc21]. The pentagon, star and heart apertures all improve the render time by a large portion,
which mainly stems from the low ray passage rate. The heart shape for example drastically limits the aperture
region and covers about half of it, consequentially about half of all generated rays hit the aperture and are not
processed further. In the case of the 50-edge-polygon aperture, as it closely resembles a circle, a virtually flawless
ray passage rate is achieved. Overall though, the ray passage rate is slightly lower than the average relative
time, as both the dead rays and the more complex intersection computation occupies some additional time. In
the case of the polygon, this computation complexity depends on the polygon edges, as they have to be looped
for each ray. This factor, however, has only marginal impacts, a probable reason is that the C++ compiler can
optimize such loops in very effective manners. With the low ray passage rate of some aperture shapes comes
another consequence, namely less exposure. This is visible in Figure 6.7, where the renders with the different
aperture shapes are displayed side by side. As the ray passage rate determines the amount of rays that contribute
to illumination, a direct relationship between it and the brightness of the render is observable.

Applying a custom aperture to other lenses shows similar tendencies. The factor by which the performance
changes is, however, not constant, but depends on the setup of the lens. A lens with its aperture close to the film
plane stops rays early, whereas a lens with many elements between film and aperture spends more time on the
calculation of rays that end up dead. In all measurements with restrictive apertures though, visible in Appendix
B, the total render time is reduced drastically and the resulting image is darker due to the lower ray passage
rate.

Aperture Shape
Render Time [s] Average Relative

Time [%]
Ray Passage

Rate [%]Kangaroo Flower Fluffy Box

Round 7.75 20.31 116.38 100.00 100.00
5 Edges 6.42 15.45 88.46 78.29 76.62
50 Edges 8.14 21.58 116.68 103.86 99.97
Star Shape 4.26 9.57 50.73 48.56 45.22
Heart Shape 4.46 9.87 53.23 50.63 47.02

Table 6.3: Render times with different aperture shapes using a biconvex lens. The second column from the right
stores the average render time of the three scenes relative to their round aperture benchmark time.

(a) Round (b) 5 Edges (c) 50 Edges (d) Star (e) Heart

Figure 6.7: Comparison of the rendered images of the kangaroo scene using different aperture shapes on a bicon-
vex lens.
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6 Analysis

6.3.3 Ray Differentials

Looking at the numbers of Table 6.2, render times of the multi-lens camera are rather high compared to thin lens
and pinhole speeds, especially when using complex lenses. Responsible for a large part of this discrepancy is the
fact that appleseed computes ray differentials for each ray. This is done by supplying partial derivatives with each
film point passed to the camera, which are essentially small offsets in x and y direction of the size of half a pixel
that are used to perform anti-aliasing. These offsets yield two more starting points for the rays to be shot into
the scene. As the three points differ, albeit only slightly, while the sampled exit pupil point remains the same,
each ray differs in both origin and direction. All three rays have thus to be traced all the way through the lens
individually. This triples the amount of lens tracing computations and consequentially triples the overhead over
the pinhole camera.

In the same fashion as in Table 6.2, render times were recorded for the same lenses with ray differentials
turned off and can be found in Appendix B. In terms of image quality, no difference is observable with the naked
eye, the renders are therefore not additionally included in Appendix C. Displaying the difference of the time
overhead over the pinhole camera with and without ray differentials graphically yields Figure 6.8. Once again,
a linear increase in time difference with increasing lens complexity can be observed. Additionally, all scenes
have roughly the same time difference, independent of the scene’s complexity. This meets the expectations, as the
number of spawned rays and, hence, the required time for tracing rays through the lens remains the same across all
three scenes. Additionally, when computing the relative time overhead for both with and without ray differentials,
the overhead with ray differentials is on average three times higher than the overhead without ray differentials.
This validates the above claim that the overhead is threefold when rendering with ray differentials.
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Figure 6.8: Difference of pinhole time overhead with and without ray differentials of different lenses, represented
by their number of refractions Nr.
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7 Conclusion and Future Work

The open source rendering engine appleseed uses a camera to spawn rays, which are then used in ray-tracing
to generate a photorealistic image. The most popular camera model, the pinhole camera, is rather limited in its
abilities to achieve realism, its simplicity and the resulting speed make it a viable option for many applications
nonetheless. To address the shortcomings of the pinhole camera, the thin and thick lens models feature a single
lens, which can offer depth of field and selective focus. These camera models are based on first-order approxima-
tions of image formation formulae and are able to achieve perfect imagery, often described as Gaussian optics. To
achieve true photorealism, higher-order terms are required, as they introduce aberrations, of which the five Seidel
aberrations are most central.

To achieve Seidel aberrations as well as other camera lens effects, a new camera model is needed that
simulates the multi-lens structure of modern photographic lenses. Based on the findings of research, a comparison
of the two main approaches and of the models within was conducted. It turned out that most papers do not feature
overarching comparisons, especially when it comes to performance. While ray simulation requires additional
computations in the lens, polynomial optics has to rebuild the polynomial from scratch each time the lens changes.
In terms of image quality and achievable effects, different models could achieve different effects and no clear
advantage could be perceived for any of the two approaches. In the end, the decision fell on ray simulation, as
its physically-based nature fits better into appleseed, both logically and implementation-wise, and tunable lens
properties are less costly when virtually no precomputations are required. Admittedly though, both approaches
have similar potential and for many, the choice is down to a question of faith.

The new multi-lens camera model based on ray simulation was then contributed to appleseed’s open source
repository. It features full parameterizability, like a photographer would be able to on his camera, including focal
length, f-number and focus distance. Appleseed users specify a lens description file, either self-made or from
existing sources, which can range from a single lens to sophisticated modern designs and feature all sorts of
characteristics, be it wide angle fisheye lenses or very narrow telephoto lenses. As long as the right format is
given, no limits are set. To improve performance and improve the ray passage rate through the lens, an exit pupil
is first computed following the approach of Wu et al. [Wu+10], at which rays are then directed at. Unlike the
thin lens, custom aperture shapes are considered directly in the tracing loop and do not require the workaround of
sampling in the specific shape.

By creating suitable scenes in Blender and exporting them to appleseed, the range of achievable effects of
the implementation was shown. Besides variable focal length, f-number and focus, it includes all five Seidel ab-
errations as well as vignetting. As the aberrations and the behavior of the real aperture have large impacts on the
look of bokeh, a bokeh scene was compared between the thin lens and multi-lens camera using different aperture
shapes. Looking at the renders, the new model creates far more realistic and nuanced bokeh able to convey depth
and periphery, compared to uniform and rather dull blur spots of the thin lens camera. By implementing the thin
lens’s approach of sampling in a specific shape in the multi-lens camera, it could be shown that this approach is
inferior to modifying the real aperture. Rendering scenic images involving lights therefore greatly benefits from
the multi-lens camera and offers more variety and realism. Next, natural vignetting of the new model was com-
pared to appleseed’s post-processing vignetting, with the result that post-processing offers more customizability,
but the multi-lens model creates distinct and varying vignetting depending on the chosen lens.

In a second step, performance was analyzed and compared to other camera models. It was shown that the
implemented model requires longer render time, but that the overhead is solely dependent on the lens’s complex-
ity and constant per computed refraction, no matter the scene’s complexity. Without refractions, equal speeds
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7 Conclusion and Future Work

as the pinhole camera were measured, which proves that the new model without lens elements is essentially a
pinhole camera. Unfortunately, as appleseed calculates ray differentials by default, the overhead is thrice as large,
making the camera model non-profitable for simple scenes. When rendering complex scenes or forgoing anti-
aliasing, the multi-lens camera becomes worthwhile, especially when the scene allows for affection by optical
aberrations.

The multi-lens camera model, although not acting as a thin lens camera replacement, offers a number of
realism-improving features that prevail over other cameras, especially in a bokeh-related context. Depending on
the scene and the desired lens, the user has to put up with a certain performance deficiency, especially when anti-
aliasing is desired. As the derived rays closely resemble the main ray, ways could be found to infer one from the
other, without having to retrace the whole lens. Such an optimization would greatly improve the performance and
make the model viable also for simpler scenes. While the single exit pupil allows for neat vignetting, it can lead
to inefficient sampling, bad passage rates and thus to underexposed images, for example when a small custom
aperture shape is chosen or when the lens has greatly differing exit pupils for different pixels. There, intelligent
ray generation like the method by Zheng and Zheng [ZZ16] could provide improvement. Additionally, a couple
of relevant effects are not included in the scope of this topic and remain open for implementation. First and
foremost, this is chromatic aberration, the dispersion of rays depending on wavelengths. Wu et al. [WZHX13]
describe its implementation in a follow-up paper, where rays are split into separate wavelengths and traced as
bundles through the lens. This could certainly be extended by the open-source community around appleseed
in the future, but would require a redesign of appleseed’s rendering pipeline to access wavelengths inside the
camera implementation. Further missing is lens flare, for which efficient computation approaches exist that offer
flexibility between accuracy and performance [HESL11; LE13]. Beyond that, aperture diffraction [SDHL11;
SHD19] or aspheric lens support [WZHL11; Joo+16] remain potential enhancements.
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Appendix A Lens Designs

(a) Biconvex [Inc21] (b) Biconvex [SHD16]

(c) Tessar [Bre58] (d) Tronnier [Tro54]

(e) Laikin [Lai95, p. 75] (f) Angenieux [Ang55]

(g) Hudson [Hud68] (h) Fisheye [Miz07]

(i) Itoh [Ito80] (j) Ikemori [Ike82]

(k) Canon [Oga96]

Figure A.1: Designs of all lenses used in Chapters 5 and 6. Visualizations were created using RayOpt9.

9https://github.com/quartiq/rayopt (visited on 22nd August 2021)
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Appendix B Performance Measurements

Lens Run 1 Run 2 Run 3 Average

Pinhole 5.874 5.881 5.936 5.8970
Thin Lens 6.384 6.348 6.368 6.3667

Aperture 6.054 5.987 6.047 6.0293
Biconvex 6.582 6.606 6.571 6.5863
Tessar 7.213 7.155 7.218 7.1953
Tronnier 8.214 8.164 8.218 8.1987
Angenieux 8.409 8.396 8.363 8.3893
Itoh 9.478 9.515 9.452 9.4817
Ikemori 10.627 10.428 10.770 10.6083
Canon 12.652 12.611 13.177 12.8133

Aperture* 6.445 6.362 6.378 6.3950
Biconvex* 7.721 7.718 7.804 7.7477
Tessar* 10.018 10.067 10.187 10.0907
Tronnier* 12.392 12.383 12.236 12.3370
Angenieux* 14.151 14.179 15.343 14.5577
Itoh* 17.060 16.746 16.736 16.8473
Ikemori* 20.810 20.775 21.672 21.0857
Canon* 28.189 27.997 28.256 28.1473

Aperture, 5 Edges* 5.133 5.133 5.151 5.1390
Biconvex, 5 Edges* 6.458 6.387 6.402 6.4157
Biconvex, 50 Edges* 8.167 8.125 8.136 8.1427
Biconvex, Star* 4.264 4.259 4.260 4.2610
Biconvex, Heart* 4.471 4.447 4.461 4.4597
Angenieux, 5 Edges* 11.520 11.735 11.522 11.5923
Canon, 5 Edges* 21.199 21.237 22.542 21.6593

* Includes ray differentials for anti-aliasing.

Table B.1: All measured rendering times of the kangaroo scene at 100 samples per pixel, 50mm focal length and,
where applicable, f/4 and focus at 1m.
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Appendix B Performance Measurements

Lens Run 1 Run 2 Run 3 Average

Pinhole 16.550 17.113 17.644 17.1023
Thin Lens 16.975 17.159 17.754 17.2960

Aperture 16.944 17.277 17.526 17.2490
Biconvex 18.347 18.288 18.360 18.3317
Tessar 19.006 18.760 19.177 18.9810
Tronnier 19.959 19.868 20.319 20.0487
Angenieux 19.900 19.818 19.472 19.7300
Itoh 20.500 20.359 20.158 20.3390
Ikemori 19.470 19.395 20.467 19.7773
Canon 23.371 22.535 22.497 22.8010

Aperture* 17.147 17.725 17.189 17.3537
Biconvex* 20.286 19.810 20.846 20.3140
Tessar* 21.958 21.943 22.183 22.0280
Tronnier* 24.766 24.456 25.310 24.8440
Angenieux* 26.094 26.598 25.327 26.0063
Itoh* 28.484 27.735 29.194 28.4710
Ikemori* 31.049 30.703 31.757 31.1697
Canon* 38.496 37.220 37.537 37.7510

Aperture, 5 Edges* 13.288 13.396 13.278 13.3207
Biconvex, 5 Edges* 15.270 15.250 15.835 15.4517
Biconvex, 50 Edges* 21.048 21.669 22.019 21.5787
Biconvex, Star* 9.526 9.476 9.701 9.5677
Biconvex, Heart* 9.874 9.846 9.886 9.8687
Angenieux, 5 Edges* 19.308 19.630 20.556 19.8313
Canon, 5 Edges* 30.815 29.441 30.515 30.2570

* Includes ray differentials for anti-aliasing.

Table B.2: All measured rendering times of the flower scene at 100 samples per pixel, 50mm focal length and,
where applicable, f/4 and focus at 1.2m.
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Lens Run 1 Run 2 Run 3 Average

Pinhole 110.179 110.376 109.961 110.1720
Thin Lens 110.349 111.133 111.038 110.8400

Aperture 109.143 110.028 108.483 109.2180
Biconvex 115.140 113.807 113.925 114.2907
Tessar 106.159 106.084 105.633 105.9587
Tronnier 110.781 111.395 110.189 110.7883
Angenieux 108.223 108.826 108.527 108.5253
Itoh 110.860 113.129 112.073 112.0207
Ikemori 115.608 116.387 115.443 115.8127
Canon 117.994 118.076 115.595 117.2217

Aperture* 109.427 112.032 110.375 110.6113
Biconvex* 116.680 116.775 115.698 116.3843
Tessar* 110.038 111.272 111.092 110.8007
Tronnier* 116.391 116.727 116.356 116.4913
Angenieux* 115.754 116.498 115.206 115.8193
Itoh* 120.604 121.178 120.635 120.8057
Ikemori* 126.571 127.175 127.294 127.0133
Canon* 132.398 132.858 134.307 133.1877

Aperture, 5 Edges* 83.388 84.143 83.641 83.7240
Biconvex, 5 Edges* 88.204 88.576 88.612 88.4640
Biconvex, 50 Edges* 116.520 116.673 116.837 116.6767
Biconvex, Star* 50.625 51.229 50.349 50.7343
Biconvex, Heart* 52.811 53.444 53.447 53.2340
Angenieux, 5 Edges* 89.068 89.501 89.249 89.2727
Canon, 5 Edges* 102.761 103.216 102.980 102.9857

* Includes ray differentials for anti-aliasing.

Table B.3: All measured rendering times of the fluffy cornell box scene at 100 samples per pixel, 50mm focal
length and, where applicable, f/4 and focus at 1.1m. The building of the initial BVH tree is excluded.
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Appendix C Performance Renders

Table C.1: All renders of the performance comparison rendered at 100 samples per pixel including ray differen-
tials, 50mm focal length and, where applicable, f/4.

Kangaroo Scene Flower Scene Fluffy Cornell Box Scene

Pinhole

Thin lens

Aperture
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Appendix C Performance Renders

Biconvex

Tessar

Tronnier

Angenieux

Itoh
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Appendix C Performance Renders

Ikemori

Canon

Aperture
5 Edges

Biconvex
5 Edges

Biconvex
50 Edges
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Appendix C Performance Renders

Biconvex
Star

Biconvex
Heart

Angenieux
5 Edges

Canon
5 Edges
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