-
Notifications
You must be signed in to change notification settings - Fork 28.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MLLIB] [SPARK-2222] Add multiclass evaluation metrics #1155
Changes from 12 commits
d535d62
fcee82d
a5c8ba4
d5ce981
e2c91c3
c3a77ad
a7e8bf0
e3db569
87fb11f
4811378
f0dadc9
0fa9511
79c3555
5ebeb08
2eae80f
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import scala.collection.Map | ||
|
||
import org.apache.spark.SparkContext._ | ||
import org.apache.spark.annotation.Experimental | ||
import org.apache.spark.mllib.linalg.{Matrices, Matrix} | ||
import org.apache.spark.rdd.RDD | ||
|
||
/** | ||
* ::Experimental:: | ||
* Evaluator for multiclass classification. | ||
* | ||
* @param predictionAndLabels an RDD of (prediction, label) pairs. | ||
*/ | ||
@Experimental | ||
class MulticlassMetrics(predictionAndLabels: RDD[(Double, Double)]) { | ||
|
||
private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue() | ||
private lazy val labelCount: Long = labelCountByClass.values.sum | ||
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels | ||
.map { case (prediction, label) => | ||
(label, if (label == prediction) 1 else 0) | ||
}.reduceByKey(_ + _) | ||
.collectAsMap() | ||
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels | ||
.map { case (prediction, label) => | ||
(prediction, if (prediction != label) 1 else 0) | ||
}.reduceByKey(_ + _) | ||
.collectAsMap() | ||
private lazy val confusions = predictionAndLabels.map { | ||
case (prediction, label) => ((prediction, label), 1) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The code style is not consistent with the blocks above. Please move |
||
}.reduceByKey(_ + _).collectAsMap() | ||
|
||
/** | ||
* Returns confusion matrix: | ||
* predicted classes are in columns, | ||
* they are ordered by class label ascending, | ||
* as in "labels" | ||
*/ | ||
lazy val confusionMatrix: Matrix = { | ||
val transposedFlatMatrix = Array.ofDim[Double](labels.size * labels.size) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Save |
||
for (i <- 0 to labels.size - 1; j <- 0 to labels.size - 1) { | ||
transposedFlatMatrix(i * labels.size + j) | ||
= confusions.getOrElse((labels(i), labels(j)), 0).toDouble | ||
} | ||
Matrices.dense(labels.size, labels.size, transposedFlatMatrix) | ||
} | ||
|
||
/** | ||
* Returns true positive rate for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def truePositiveRate(label: Double): Double = recall(label) | ||
|
||
/** | ||
* Returns false positive rate for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def falsePositiveRate(label: Double): Double = { | ||
val fp = fpByClass.getOrElse(label, 0) | ||
fp.toDouble / (labelCount - labelCountByClass(label)) | ||
} | ||
|
||
/** | ||
* Returns precision for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def precision(label: Double): Double = { | ||
val tp = tpByClass(label) | ||
val fp = fpByClass.getOrElse(label, 0) | ||
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp) | ||
} | ||
|
||
/** | ||
* Returns recall for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label) | ||
|
||
/** | ||
* Returns f-measure for a given label (category) | ||
* @param label the label. | ||
* @param beta the beta parameter. | ||
*/ | ||
def fMeasure(label: Double, beta: Double): Double = { | ||
val p = precision(label) | ||
val r = recall(label) | ||
val betaSqrd = beta * beta | ||
if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r) | ||
} | ||
|
||
/** | ||
* Returns f1-measure for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def fMeasure(label: Double): Double = fMeasure(label, 1.0) | ||
|
||
/** | ||
* Returns precision | ||
*/ | ||
lazy val precision: Double = tpByClass.values.sum.toDouble / labelCount | ||
|
||
/** | ||
* Returns recall | ||
* (equals to precision for multiclass classifier | ||
* because sum of all false positives is equal to sum | ||
* of all false negatives) | ||
*/ | ||
lazy val recall: Double = precision | ||
|
||
/** | ||
* Returns f-measure | ||
* (equals to precision and recall because precision equals recall) | ||
*/ | ||
lazy val fMeasure: Double = precision | ||
|
||
/** | ||
* Returns weighted true positive rate | ||
* (equals to precision, recall and f-measure) | ||
*/ | ||
lazy val weightedTruePositiveRate: Double = weightedRecall | ||
|
||
/** | ||
* Returns weighted false positive rate | ||
*/ | ||
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) => | ||
falsePositiveRate(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged recall | ||
* (equals to precision, recall and f-measure) | ||
*/ | ||
lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) => | ||
recall(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged precision | ||
*/ | ||
lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) => | ||
precision(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged f-measure | ||
* @param beta the beta parameter. | ||
*/ | ||
def weightedFMeasure(beta: Double): Double = labelCountByClass.map { case (category, count) => | ||
fMeasure(category, beta) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged f1-measure | ||
*/ | ||
lazy val weightedFMeasure: Double = labelCountByClass.map { case (category, count) => | ||
fMeasure(category, 1.0) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns the sequence of labels in ascending order | ||
*/ | ||
lazy val labels: Array[Double] = tpByClass.keys.toArray.sorted | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import org.apache.spark.mllib.linalg.Matrices | ||
import org.apache.spark.mllib.util.LocalSparkContext | ||
import org.scalatest.FunSuite | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. organize imports into groups |
||
|
||
class MulticlassMetricsSuite extends FunSuite with LocalSparkContext { | ||
test("Multiclass evaluation metrics") { | ||
/* | ||
* Confusion matrix for 3-class classification with total 9 instances: | ||
* |2|1|1| true class0 (4 instances) | ||
* |1|3|0| true class1 (4 instances) | ||
* |0|0|1| true class2 (1 instance) | ||
*/ | ||
val confusionMatrix = Matrices.dense(3, 3, Array(2, 1, 0, 1, 3, 0, 1, 0, 1)) | ||
val labels = Array(0.0, 1.0, 2.0) | ||
val predictionAndLabels = sc.parallelize( | ||
Seq((0.0, 0.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0), (1.0, 1.0), | ||
(1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2) | ||
val metrics = new MulticlassMetrics(predictionAndLabels) | ||
val delta = 0.0000001 | ||
val fpRate0 = 1.0 / (9 - 4) | ||
val fpRate1 = 1.0 / (9 - 4) | ||
val fpRate2 = 1.0 / (9 - 1) | ||
val precision0 = 2.0 / (2 + 1) | ||
val precision1 = 3.0 / (3 + 1) | ||
val precision2 = 1.0 / (1 + 1) | ||
val recall0 = 2.0 / (2 + 2) | ||
val recall1 = 3.0 / (3 + 1) | ||
val recall2 = 1.0 / (1 + 0) | ||
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0) | ||
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1) | ||
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2) | ||
val f2measure0 = (1 + 2 * 2) * precision0 * recall0 / (2 * 2 * precision0 + recall0) | ||
val f2measure1 = (1 + 2 * 2) * precision1 * recall1 / (2 * 2 * precision1 + recall1) | ||
val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2) | ||
|
||
assert(metrics.confusionMatrix.toArray.sameElements(confusionMatrix.toArray)) | ||
assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. add a test for F2? |
||
assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta) | ||
assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta) | ||
assert(math.abs(metrics.precision(0.0) - precision0) < delta) | ||
assert(math.abs(metrics.precision(1.0) - precision1) < delta) | ||
assert(math.abs(metrics.precision(2.0) - precision2) < delta) | ||
assert(math.abs(metrics.recall(0.0) - recall0) < delta) | ||
assert(math.abs(metrics.recall(1.0) - recall1) < delta) | ||
assert(math.abs(metrics.recall(2.0) - recall2) < delta) | ||
assert(math.abs(metrics.fMeasure(0.0) - f1measure0) < delta) | ||
assert(math.abs(metrics.fMeasure(1.0) - f1measure1) < delta) | ||
assert(math.abs(metrics.fMeasure(2.0) - f1measure2) < delta) | ||
assert(math.abs(metrics.fMeasure(0.0, 2.0) - f2measure0) < delta) | ||
assert(math.abs(metrics.fMeasure(1.0, 2.0) - f2measure1) < delta) | ||
assert(math.abs(metrics.fMeasure(2.0, 2.0) - f2measure2) < delta) | ||
|
||
assert(math.abs(metrics.recall - | ||
(2.0 + 3.0 + 1.0) / ((2 + 3 + 1) + (1 + 1 + 1))) < delta) | ||
assert(math.abs(metrics.recall - metrics.precision) < delta) | ||
assert(math.abs(metrics.recall - metrics.fMeasure) < delta) | ||
assert(math.abs(metrics.recall - metrics.weightedRecall) < delta) | ||
assert(math.abs(metrics.weightedFalsePositiveRate - | ||
((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta) | ||
assert(math.abs(metrics.weightedPrecision - | ||
((4.0 / 9) * precision0 + (4.0 / 9) * precision1 + (1.0 / 9) * precision2)) < delta) | ||
assert(math.abs(metrics.weightedRecall - | ||
((4.0 / 9) * recall0 + (4.0 / 9) * recall1 + (1.0 / 9) * recall2)) < delta) | ||
assert(math.abs(metrics.weightedFMeasure - | ||
((4.0 / 9) * f1measure0 + (4.0 / 9) * f1measure1 + (1.0 / 9) * f1measure2)) < delta) | ||
assert(math.abs(metrics.weightedFMeasure(2.0) - | ||
((4.0 / 9) * f2measure0 + (4.0 / 9) * f2measure1 + (1.0 / 9) * f2measure2)) < delta) | ||
assert(metrics.labels.sameElements(labels)) | ||
} | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Insert
::Experimental::
to the beginning of the doc to make it show up in the generated doc.