diff --git a/mllib/src/main/scala/org/apache/spark/mllib/random/RandomRDDs.scala b/mllib/src/main/scala/org/apache/spark/mllib/random/RandomRDDs.scala index 9d7516351c36e..7bd46e727175c 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/random/RandomRDDs.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/random/RandomRDDs.scala @@ -35,16 +35,16 @@ import org.apache.spark.util.Utils object RandomRDDs { /** - * Generates an RDD comprised of i.i.d. samples from the uniform distribution on [0.0, 1.0]. + * Generates an RDD comprised of i.i.d. samples from the uniform distribution `U(0.0, 1.0)`. * - * To transform the distribution in the generated RDD from U[0.0, 1.0] to U[a, b], use - * `RandomRDDGenerators.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v)`. + * To transform the distribution in the generated RDD from `U(0.0, 1.0)` to `U(a, b)`, use + * `RandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v)`. * * @param sc SparkContext used to create the RDD. * @param size Size of the RDD. * @param numPartitions Number of partitions in the RDD (default: `sc.defaultParallelism`). * @param seed Random seed (default: a random long integer). - * @return RDD[Double] comprised of i.i.d. samples ~ U[0.0, 1.0]. + * @return RDD[Double] comprised of i.i.d. samples ~ `U(0.0, 1.0)`. */ def uniformRDD( sc: SparkContext, @@ -84,7 +84,7 @@ object RandomRDDs { * Generates an RDD comprised of i.i.d. samples from the standard normal distribution. * * To transform the distribution in the generated RDD from standard normal to some other normal - * N(mean, sigma), use `RandomRDDGenerators.normalRDD(sc, n, p, seed).map(v => mean + sigma * v)`. + * `N(mean, sigma^2^)`, use `RandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v)`. * * @param sc SparkContext used to create the RDD. * @param size Size of the RDD. @@ -97,9 +97,8 @@ object RandomRDDs { size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double] = { - val p = if (numPartitions > 0) numPartitions else sc.defaultParallelism val normal = new StandardNormalGenerator() - randomRDD(sc, normal, size, p, seed) + randomRDD(sc, normal, size, numPartitionsOrDefault(sc, numPartitions), seed) } /** @@ -202,14 +201,14 @@ object RandomRDDs { /** * Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the - * uniform distribution on [0.0 1.0]. + * uniform distribution on `U(0.0 1.0)`. * * @param sc SparkContext used to create the RDD. * @param numRows Number of Vectors in the RDD. * @param numCols Number of elements in each Vector. * @param numPartitions Number of partitions in the RDD. * @param seed Seed for the RNG that generates the seed for the generator in each partition. - * @return RDD[Vector] with vectors containing i.i.d samples ~ U[0.0, 1.0]. + * @return RDD[Vector] with vectors containing i.i.d samples ~ `U(0.0, 1.0)`. */ def uniformVectorRDD( sc: SparkContext, @@ -263,7 +262,7 @@ object RandomRDDs { * @param numCols Number of elements in each Vector. * @param numPartitions Number of partitions in the RDD (default: `sc.defaultParallelism`). * @param seed Random seed (default: a random long integer). - * @return RDD[Vector] with vectors containing i.i.d. samples ~ N(0.0, 1.0). + * @return RDD[Vector] with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. */ def normalVectorRDD( sc: SparkContext, diff --git a/python/pyspark/mllib/random.py b/python/pyspark/mllib/random.py index 3f3b19053d32e..386748007da72 100644 --- a/python/pyspark/mllib/random.py +++ b/python/pyspark/mllib/random.py @@ -37,8 +37,8 @@ def uniformRDD(sc, size, numPartitions=None, seed=None): Generates an RDD comprised of i.i.d. samples from the uniform distribution on [0.0, 1.0]. - To transform the distribution in the generated RDD from U[0.0, 1.0] - to U[a, b], use + To transform the distribution in the generated RDD from U(0.0, 1.0) + to U(a, b), use C{RandomRDDs.uniformRDD(sc, n, p, seed)\ .map(lambda v: a + (b - a) * v)} @@ -60,11 +60,11 @@ def uniformRDD(sc, size, numPartitions=None, seed=None): @staticmethod def normalRDD(sc, size, numPartitions=None, seed=None): """ - Generates an RDD comprised of i.i.d samples from the standard normal + Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal - to some other normal N(mean, sigma), use + to some other normal N(mean, sigma^2), use C{RandomRDDs.normal(sc, n, p, seed)\ .map(lambda v: mean + sigma * v)} @@ -84,7 +84,7 @@ def normalRDD(sc, size, numPartitions=None, seed=None): @staticmethod def poissonRDD(sc, mean, size, numPartitions=None, seed=None): """ - Generates an RDD comprised of i.i.d samples from the Poisson + Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean. >>> mean = 100.0 @@ -105,8 +105,8 @@ def poissonRDD(sc, mean, size, numPartitions=None, seed=None): @staticmethod def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ - Generates an RDD comprised of vectors containing i.i.d samples drawn - from the uniform distribution on [0.0 1.0]. + Generates an RDD comprised of vectors containing i.i.d. samples drawn + from the uniform distribution U(0.0 1.0). >>> import numpy as np >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect()) @@ -125,7 +125,7 @@ def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): @staticmethod def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ - Generates an RDD comprised of vectors containing i.i.d samples drawn + Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. >>> import numpy as np @@ -145,7 +145,7 @@ def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): @staticmethod def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): """ - Generates an RDD comprised of vectors containing i.i.d samples drawn + Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. >>> import numpy as np