-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MLLIB] SPARK-2329 Add multi-label evaluation metrics
Implementation of various multi-label classification measures, including: Hamming-loss, strict and default Accuracy, macro-averaged Precision, Recall and F1-measure based on documents and labels, micro-averaged measures: https://issues.apache.org/jira/browse/SPARK-2329 Multi-class measures are currently in the following pull request: #1155 Author: Alexander Ulanov <nashb@yandex.ru> Author: avulanov <nashb@yandex.ru> Closes #1270 from avulanov/multilabelmetrics and squashes the following commits: fc8175e [Alexander Ulanov] Merge with previous updates 43a613e [Alexander Ulanov] Addressing reviewers comments: change Set to Array 517a594 [avulanov] Addressing reviewers comments: Scala style cf4222b [avulanov] Addressing reviewers comments: renaming. Added label method that returns the list of labels 1843f73 [Alexander Ulanov] Scala style fix 79e8476 [Alexander Ulanov] Replacing fold(_ + _) with sum as suggested by srowen ca46765 [Alexander Ulanov] Cosmetic changes: Apache header and parameter explanation 40593f5 [Alexander Ulanov] Multi-label metrics: Hamming-loss, strict and normal accuracy, fix to macro measures, bunch of tests ad62df0 [Alexander Ulanov] Comments and scala style check 154164b [Alexander Ulanov] Multilabel evaluation metics and tests: macro precision and recall averaged by docs, micro and per-class precision and recall averaged by class
- Loading branch information
Showing
2 changed files
with
260 additions
and
0 deletions.
There are no files selected for viewing
157 changes: 157 additions & 0 deletions
157
mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.SparkContext._ | ||
|
||
/** | ||
* Evaluator for multilabel classification. | ||
* @param predictionAndLabels an RDD of (predictions, labels) pairs, | ||
* both are non-null Arrays, each with unique elements. | ||
*/ | ||
class MultilabelMetrics(predictionAndLabels: RDD[(Array[Double], Array[Double])]) { | ||
|
||
private lazy val numDocs: Long = predictionAndLabels.count() | ||
|
||
private lazy val numLabels: Long = predictionAndLabels.flatMap { case (_, labels) => | ||
labels}.distinct().count() | ||
|
||
/** | ||
* Returns subset accuracy | ||
* (for equal sets of labels) | ||
*/ | ||
lazy val subsetAccuracy: Double = predictionAndLabels.filter { case (predictions, labels) => | ||
predictions.deep == labels.deep | ||
}.count().toDouble / numDocs | ||
|
||
/** | ||
* Returns accuracy | ||
*/ | ||
lazy val accuracy: Double = predictionAndLabels.map { case (predictions, labels) => | ||
labels.intersect(predictions).size.toDouble / | ||
(labels.size + predictions.size - labels.intersect(predictions).size)}.sum / numDocs | ||
|
||
|
||
/** | ||
* Returns Hamming-loss | ||
*/ | ||
lazy val hammingLoss: Double = predictionAndLabels.map { case (predictions, labels) => | ||
labels.size + predictions.size - 2 * labels.intersect(predictions).size | ||
}.sum / (numDocs * numLabels) | ||
|
||
/** | ||
* Returns document-based precision averaged by the number of documents | ||
*/ | ||
lazy val precision: Double = predictionAndLabels.map { case (predictions, labels) => | ||
if (predictions.size > 0) { | ||
predictions.intersect(labels).size.toDouble / predictions.size | ||
} else { | ||
0 | ||
} | ||
}.sum / numDocs | ||
|
||
/** | ||
* Returns document-based recall averaged by the number of documents | ||
*/ | ||
lazy val recall: Double = predictionAndLabels.map { case (predictions, labels) => | ||
labels.intersect(predictions).size.toDouble / labels.size | ||
}.sum / numDocs | ||
|
||
/** | ||
* Returns document-based f1-measure averaged by the number of documents | ||
*/ | ||
lazy val f1Measure: Double = predictionAndLabels.map { case (predictions, labels) => | ||
2.0 * predictions.intersect(labels).size / (predictions.size + labels.size) | ||
}.sum / numDocs | ||
|
||
private lazy val tpPerClass = predictionAndLabels.flatMap { case (predictions, labels) => | ||
predictions.intersect(labels) | ||
}.countByValue() | ||
|
||
private lazy val fpPerClass = predictionAndLabels.flatMap { case (predictions, labels) => | ||
predictions.diff(labels) | ||
}.countByValue() | ||
|
||
private lazy val fnPerClass = predictionAndLabels.flatMap { case(predictions, labels) => | ||
labels.diff(predictions) | ||
}.countByValue() | ||
|
||
/** | ||
* Returns precision for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def precision(label: Double) = { | ||
val tp = tpPerClass(label) | ||
val fp = fpPerClass.getOrElse(label, 0L) | ||
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp) | ||
} | ||
|
||
/** | ||
* Returns recall for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def recall(label: Double) = { | ||
val tp = tpPerClass(label) | ||
val fn = fnPerClass.getOrElse(label, 0L) | ||
if (tp + fn == 0) 0 else tp.toDouble / (tp + fn) | ||
} | ||
|
||
/** | ||
* Returns f1-measure for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def f1Measure(label: Double) = { | ||
val p = precision(label) | ||
val r = recall(label) | ||
if((p + r) == 0) 0 else 2 * p * r / (p + r) | ||
} | ||
|
||
private lazy val sumTp = tpPerClass.foldLeft(0L) { case (sum, (_, tp)) => sum + tp } | ||
private lazy val sumFpClass = fpPerClass.foldLeft(0L) { case (sum, (_, fp)) => sum + fp } | ||
private lazy val sumFnClass = fnPerClass.foldLeft(0L) { case (sum, (_, fn)) => sum + fn } | ||
|
||
/** | ||
* Returns micro-averaged label-based precision | ||
* (equals to micro-averaged document-based precision) | ||
*/ | ||
lazy val microPrecision = { | ||
val sumFp = fpPerClass.foldLeft(0L){ case(cum, (_, fp)) => cum + fp} | ||
sumTp.toDouble / (sumTp + sumFp) | ||
} | ||
|
||
/** | ||
* Returns micro-averaged label-based recall | ||
* (equals to micro-averaged document-based recall) | ||
*/ | ||
lazy val microRecall = { | ||
val sumFn = fnPerClass.foldLeft(0.0){ case(cum, (_, fn)) => cum + fn} | ||
sumTp.toDouble / (sumTp + sumFn) | ||
} | ||
|
||
/** | ||
* Returns micro-averaged label-based f1-measure | ||
* (equals to micro-averaged document-based f1-measure) | ||
*/ | ||
lazy val microF1Measure = 2.0 * sumTp / (2 * sumTp + sumFnClass + sumFpClass) | ||
|
||
/** | ||
* Returns the sequence of labels in ascending order | ||
*/ | ||
lazy val labels: Array[Double] = tpPerClass.keys.toArray.sorted | ||
} |
103 changes: 103 additions & 0 deletions
103
mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import org.scalatest.FunSuite | ||
|
||
import org.apache.spark.mllib.util.LocalSparkContext | ||
import org.apache.spark.rdd.RDD | ||
|
||
class MultilabelMetricsSuite extends FunSuite with LocalSparkContext { | ||
test("Multilabel evaluation metrics") { | ||
/* | ||
* Documents true labels (5x class0, 3x class1, 4x class2): | ||
* doc 0 - predict 0, 1 - class 0, 2 | ||
* doc 1 - predict 0, 2 - class 0, 1 | ||
* doc 2 - predict none - class 0 | ||
* doc 3 - predict 2 - class 2 | ||
* doc 4 - predict 2, 0 - class 2, 0 | ||
* doc 5 - predict 0, 1, 2 - class 0, 1 | ||
* doc 6 - predict 1 - class 1, 2 | ||
* | ||
* predicted classes | ||
* class 0 - doc 0, 1, 4, 5 (total 4) | ||
* class 1 - doc 0, 5, 6 (total 3) | ||
* class 2 - doc 1, 3, 4, 5 (total 4) | ||
* | ||
* true classes | ||
* class 0 - doc 0, 1, 2, 4, 5 (total 5) | ||
* class 1 - doc 1, 5, 6 (total 3) | ||
* class 2 - doc 0, 3, 4, 6 (total 4) | ||
* | ||
*/ | ||
val scoreAndLabels: RDD[(Array[Double], Array[Double])] = sc.parallelize( | ||
Seq((Array(0.0, 1.0), Array(0.0, 2.0)), | ||
(Array(0.0, 2.0), Array(0.0, 1.0)), | ||
(Array(), Array(0.0)), | ||
(Array(2.0), Array(2.0)), | ||
(Array(2.0, 0.0), Array(2.0, 0.0)), | ||
(Array(0.0, 1.0, 2.0), Array(0.0, 1.0)), | ||
(Array(1.0), Array(1.0, 2.0))), 2) | ||
val metrics = new MultilabelMetrics(scoreAndLabels) | ||
val delta = 0.00001 | ||
val precision0 = 4.0 / (4 + 0) | ||
val precision1 = 2.0 / (2 + 1) | ||
val precision2 = 2.0 / (2 + 2) | ||
val recall0 = 4.0 / (4 + 1) | ||
val recall1 = 2.0 / (2 + 1) | ||
val recall2 = 2.0 / (2 + 2) | ||
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0) | ||
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1) | ||
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2) | ||
val sumTp = 4 + 2 + 2 | ||
assert(sumTp == (1 + 1 + 0 + 1 + 2 + 2 + 1)) | ||
val microPrecisionClass = sumTp.toDouble / (4 + 0 + 2 + 1 + 2 + 2) | ||
val microRecallClass = sumTp.toDouble / (4 + 1 + 2 + 1 + 2 + 2) | ||
val microF1MeasureClass = 2.0 * sumTp.toDouble / | ||
(2 * sumTp.toDouble + (1 + 1 + 2) + (0 + 1 + 2)) | ||
val macroPrecisionDoc = 1.0 / 7 * | ||
(1.0 / 2 + 1.0 / 2 + 0 + 1.0 / 1 + 2.0 / 2 + 2.0 / 3 + 1.0 / 1.0) | ||
val macroRecallDoc = 1.0 / 7 * | ||
(1.0 / 2 + 1.0 / 2 + 0 / 1 + 1.0 / 1 + 2.0 / 2 + 2.0 / 2 + 1.0 / 2) | ||
val macroF1MeasureDoc = (1.0 / 7) * | ||
2 * ( 1.0 / (2 + 2) + 1.0 / (2 + 2) + 0 + 1.0 / (1 + 1) + | ||
2.0 / (2 + 2) + 2.0 / (3 + 2) + 1.0 / (1 + 2) ) | ||
val hammingLoss = (1.0 / (7 * 3)) * (2 + 2 + 1 + 0 + 0 + 1 + 1) | ||
val strictAccuracy = 2.0 / 7 | ||
val accuracy = 1.0 / 7 * (1.0 / 3 + 1.0 /3 + 0 + 1.0 / 1 + 2.0 / 2 + 2.0 / 3 + 1.0 / 2) | ||
assert(math.abs(metrics.precision(0.0) - precision0) < delta) | ||
assert(math.abs(metrics.precision(1.0) - precision1) < delta) | ||
assert(math.abs(metrics.precision(2.0) - precision2) < delta) | ||
assert(math.abs(metrics.recall(0.0) - recall0) < delta) | ||
assert(math.abs(metrics.recall(1.0) - recall1) < delta) | ||
assert(math.abs(metrics.recall(2.0) - recall2) < delta) | ||
assert(math.abs(metrics.f1Measure(0.0) - f1measure0) < delta) | ||
assert(math.abs(metrics.f1Measure(1.0) - f1measure1) < delta) | ||
assert(math.abs(metrics.f1Measure(2.0) - f1measure2) < delta) | ||
assert(math.abs(metrics.microPrecision - microPrecisionClass) < delta) | ||
assert(math.abs(metrics.microRecall - microRecallClass) < delta) | ||
assert(math.abs(metrics.microF1Measure - microF1MeasureClass) < delta) | ||
assert(math.abs(metrics.precision - macroPrecisionDoc) < delta) | ||
assert(math.abs(metrics.recall - macroRecallDoc) < delta) | ||
assert(math.abs(metrics.f1Measure - macroF1MeasureDoc) < delta) | ||
assert(math.abs(metrics.hammingLoss - hammingLoss) < delta) | ||
assert(math.abs(metrics.subsetAccuracy - strictAccuracy) < delta) | ||
assert(math.abs(metrics.accuracy - accuracy) < delta) | ||
assert(metrics.labels.sameElements(Array(0.0, 1.0, 2.0))) | ||
} | ||
} |