-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:apache/spark into yarn-shuffle-se…
…rvice
- Loading branch information
Showing
15 changed files
with
1,059 additions
and
295 deletions.
There are no files selected for viewing
126 changes: 126 additions & 0 deletions
126
examples/src/main/java/org/apache/spark/examples/mllib/JavaGradientBoostedTrees.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.mllib; | ||
|
||
import scala.Tuple2; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaPairRDD; | ||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.api.java.function.Function; | ||
import org.apache.spark.api.java.function.Function2; | ||
import org.apache.spark.api.java.function.PairFunction; | ||
import org.apache.spark.mllib.regression.LabeledPoint; | ||
import org.apache.spark.mllib.tree.GradientBoosting; | ||
import org.apache.spark.mllib.tree.configuration.BoostingStrategy; | ||
import org.apache.spark.mllib.tree.model.WeightedEnsembleModel; | ||
import org.apache.spark.mllib.util.MLUtils; | ||
|
||
/** | ||
* Classification and regression using gradient-boosted decision trees. | ||
*/ | ||
public final class JavaGradientBoostedTrees { | ||
|
||
private static void usage() { | ||
System.err.println("Usage: JavaGradientBoostedTrees <libsvm format data file>" + | ||
" <Classification/Regression>"); | ||
System.exit(-1); | ||
} | ||
|
||
public static void main(String[] args) { | ||
String datapath = "data/mllib/sample_libsvm_data.txt"; | ||
String algo = "Classification"; | ||
if (args.length >= 1) { | ||
datapath = args[0]; | ||
} | ||
if (args.length >= 2) { | ||
algo = args[1]; | ||
} | ||
if (args.length > 2) { | ||
usage(); | ||
} | ||
SparkConf sparkConf = new SparkConf().setAppName("JavaGradientBoostedTrees"); | ||
JavaSparkContext sc = new JavaSparkContext(sparkConf); | ||
|
||
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc.sc(), datapath).toJavaRDD().cache(); | ||
|
||
// Set parameters. | ||
// Note: All features are treated as continuous. | ||
BoostingStrategy boostingStrategy = BoostingStrategy.defaultParams(algo); | ||
boostingStrategy.setNumIterations(10); | ||
boostingStrategy.weakLearnerParams().setMaxDepth(5); | ||
|
||
if (algo.equals("Classification")) { | ||
// Compute the number of classes from the data. | ||
Integer numClasses = data.map(new Function<LabeledPoint, Double>() { | ||
@Override public Double call(LabeledPoint p) { | ||
return p.label(); | ||
} | ||
}).countByValue().size(); | ||
boostingStrategy.setNumClassesForClassification(numClasses); // ignored for Regression | ||
|
||
// Train a GradientBoosting model for classification. | ||
final WeightedEnsembleModel model = GradientBoosting.trainClassifier(data, boostingStrategy); | ||
|
||
// Evaluate model on training instances and compute training error | ||
JavaPairRDD<Double, Double> predictionAndLabel = | ||
data.mapToPair(new PairFunction<LabeledPoint, Double, Double>() { | ||
@Override public Tuple2<Double, Double> call(LabeledPoint p) { | ||
return new Tuple2<Double, Double>(model.predict(p.features()), p.label()); | ||
} | ||
}); | ||
Double trainErr = | ||
1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() { | ||
@Override public Boolean call(Tuple2<Double, Double> pl) { | ||
return !pl._1().equals(pl._2()); | ||
} | ||
}).count() / data.count(); | ||
System.out.println("Training error: " + trainErr); | ||
System.out.println("Learned classification tree model:\n" + model); | ||
} else if (algo.equals("Regression")) { | ||
// Train a GradientBoosting model for classification. | ||
final WeightedEnsembleModel model = GradientBoosting.trainRegressor(data, boostingStrategy); | ||
|
||
// Evaluate model on training instances and compute training error | ||
JavaPairRDD<Double, Double> predictionAndLabel = | ||
data.mapToPair(new PairFunction<LabeledPoint, Double, Double>() { | ||
@Override public Tuple2<Double, Double> call(LabeledPoint p) { | ||
return new Tuple2<Double, Double>(model.predict(p.features()), p.label()); | ||
} | ||
}); | ||
Double trainMSE = | ||
predictionAndLabel.map(new Function<Tuple2<Double, Double>, Double>() { | ||
@Override public Double call(Tuple2<Double, Double> pl) { | ||
Double diff = pl._1() - pl._2(); | ||
return diff * diff; | ||
} | ||
}).reduce(new Function2<Double, Double, Double>() { | ||
@Override public Double call(Double a, Double b) { | ||
return a + b; | ||
} | ||
}) / data.count(); | ||
System.out.println("Training Mean Squared Error: " + trainMSE); | ||
System.out.println("Learned regression tree model:\n" + model); | ||
} else { | ||
usage(); | ||
} | ||
|
||
sc.stop(); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
146 changes: 146 additions & 0 deletions
146
examples/src/main/scala/org/apache/spark/examples/mllib/GradientBoostedTrees.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.mllib | ||
|
||
import scopt.OptionParser | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.mllib.evaluation.MulticlassMetrics | ||
import org.apache.spark.mllib.tree.GradientBoosting | ||
import org.apache.spark.mllib.tree.configuration.{BoostingStrategy, Algo} | ||
import org.apache.spark.util.Utils | ||
|
||
/** | ||
* An example runner for Gradient Boosting using decision trees as weak learners. Run with | ||
* {{{ | ||
* ./bin/run-example org.apache.spark.examples.mllib.GradientBoostedTrees [options] | ||
* }}} | ||
* If you use it as a template to create your own app, please use `spark-submit` to submit your app. | ||
* | ||
* Note: This script treats all features as real-valued (not categorical). | ||
* To include categorical features, modify categoricalFeaturesInfo. | ||
*/ | ||
object GradientBoostedTrees { | ||
|
||
case class Params( | ||
input: String = null, | ||
testInput: String = "", | ||
dataFormat: String = "libsvm", | ||
algo: String = "Classification", | ||
maxDepth: Int = 5, | ||
numIterations: Int = 10, | ||
fracTest: Double = 0.2) extends AbstractParams[Params] | ||
|
||
def main(args: Array[String]) { | ||
val defaultParams = Params() | ||
|
||
val parser = new OptionParser[Params]("GradientBoostedTrees") { | ||
head("GradientBoostedTrees: an example decision tree app.") | ||
opt[String]("algo") | ||
.text(s"algorithm (${Algo.values.mkString(",")}), default: ${defaultParams.algo}") | ||
.action((x, c) => c.copy(algo = x)) | ||
opt[Int]("maxDepth") | ||
.text(s"max depth of the tree, default: ${defaultParams.maxDepth}") | ||
.action((x, c) => c.copy(maxDepth = x)) | ||
opt[Int]("numIterations") | ||
.text(s"number of iterations of boosting," + s" default: ${defaultParams.numIterations}") | ||
.action((x, c) => c.copy(numIterations = x)) | ||
opt[Double]("fracTest") | ||
.text(s"fraction of data to hold out for testing. If given option testInput, " + | ||
s"this option is ignored. default: ${defaultParams.fracTest}") | ||
.action((x, c) => c.copy(fracTest = x)) | ||
opt[String]("testInput") | ||
.text(s"input path to test dataset. If given, option fracTest is ignored." + | ||
s" default: ${defaultParams.testInput}") | ||
.action((x, c) => c.copy(testInput = x)) | ||
opt[String]("<dataFormat>") | ||
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)") | ||
.action((x, c) => c.copy(dataFormat = x)) | ||
arg[String]("<input>") | ||
.text("input path to labeled examples") | ||
.required() | ||
.action((x, c) => c.copy(input = x)) | ||
checkConfig { params => | ||
if (params.fracTest < 0 || params.fracTest > 1) { | ||
failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1].") | ||
} else { | ||
success | ||
} | ||
} | ||
} | ||
|
||
parser.parse(args, defaultParams).map { params => | ||
run(params) | ||
}.getOrElse { | ||
sys.exit(1) | ||
} | ||
} | ||
|
||
def run(params: Params) { | ||
|
||
val conf = new SparkConf().setAppName(s"GradientBoostedTrees with $params") | ||
val sc = new SparkContext(conf) | ||
|
||
println(s"GradientBoostedTrees with parameters:\n$params") | ||
|
||
// Load training and test data and cache it. | ||
val (training, test, numClasses) = DecisionTreeRunner.loadDatasets(sc, params.input, | ||
params.dataFormat, params.testInput, Algo.withName(params.algo), params.fracTest) | ||
|
||
val boostingStrategy = BoostingStrategy.defaultParams(params.algo) | ||
boostingStrategy.numClassesForClassification = numClasses | ||
boostingStrategy.numIterations = params.numIterations | ||
boostingStrategy.weakLearnerParams.maxDepth = params.maxDepth | ||
|
||
val randomSeed = Utils.random.nextInt() | ||
if (params.algo == "Classification") { | ||
val startTime = System.nanoTime() | ||
val model = GradientBoosting.trainClassifier(training, boostingStrategy) | ||
val elapsedTime = (System.nanoTime() - startTime) / 1e9 | ||
println(s"Training time: $elapsedTime seconds") | ||
if (model.totalNumNodes < 30) { | ||
println(model.toDebugString) // Print full model. | ||
} else { | ||
println(model) // Print model summary. | ||
} | ||
val trainAccuracy = | ||
new MulticlassMetrics(training.map(lp => (model.predict(lp.features), lp.label))) | ||
.precision | ||
println(s"Train accuracy = $trainAccuracy") | ||
val testAccuracy = | ||
new MulticlassMetrics(test.map(lp => (model.predict(lp.features), lp.label))).precision | ||
println(s"Test accuracy = $testAccuracy") | ||
} else if (params.algo == "Regression") { | ||
val startTime = System.nanoTime() | ||
val model = GradientBoosting.trainRegressor(training, boostingStrategy) | ||
val elapsedTime = (System.nanoTime() - startTime) / 1e9 | ||
println(s"Training time: $elapsedTime seconds") | ||
if (model.totalNumNodes < 30) { | ||
println(model.toDebugString) // Print full model. | ||
} else { | ||
println(model) // Print model summary. | ||
} | ||
val trainMSE = DecisionTreeRunner.meanSquaredError(model, training) | ||
println(s"Train mean squared error = $trainMSE") | ||
val testMSE = DecisionTreeRunner.meanSquaredError(model, test) | ||
println(s"Test mean squared error = $testMSE") | ||
} | ||
|
||
sc.stop() | ||
} | ||
} |
Oops, something went wrong.