-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
141 lines (106 loc) · 4.07 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import collections, igraph
import errors
class Graph(object):
def __init__(self, edges):
self.ig = igraph.Graph()
# Count number of vertices
region_idxs = set()
for (src, dest) in edges:
region_idxs.add(src)
region_idxs.add(dest)
if len(region_idxs) == 0:
return
self.ig.add_vertices(max(region_idxs) + 1)
self.ig.add_edges(edges)
def subgraph(self, edge_filter):
edges = filter(edge_filter, self.edges())
return Graph( list(edges) )
def node_count(self):
'''
Return the number of nodes in the graph. This may be one (1) higher than expected
because of how we build the graph.
'''
return self.ig.vcount()
def edge_count(self):
'''
Return the number of edges in the graph.
'''
return self.ig.ecount()
def nodes(self):
'''
Return a list containing all region_idxs represented in the graph. A node will only
exist in the graph if there's at least one inbound or outbound edge.
'''
return self.ig.vs.indices
def edges(self):
'''
Generator that iterates over all edges in the graph.
'''
for edge in self.ig.get_edgelist():
yield edge
def all_within(self, region_idx, radius):
idxs = set()
for dist in range(1, radius):
nodes = self.neighbors(region_idx, dist)
idxs.update(nodes)
return list(idxs)
def neighbors(self, region_idx, dist=1):
'''
Find all neighbors @ distance `dist` for the specified node.
'''
if region_idx >= self.node_count():
return []
neighbors = []
for (vertex, vert_dist, _) in self.ig.bfsiter(int(region_idx), advanced=True):
if vert_dist == dist:
neighbors.append(vertex.index)
if vert_dist > dist:
return neighbors
return neighbors
def distance(self, region_idx, dest_func, max_distance=None):
'''
Find path from region_idx to a node that satisfies `dest_func`, traveling
only through nodes that satisfy `traverse_func`. Return the destination idx
as well as the shortest distance from `region_idx` to the destination.
The returned `dist` is guaranteed to be the shortest distance.
'''
# region_idx doesn't exist in the graph
if region_idx >= self.node_count():
return (None, 0)
for (vertex, vert_dist, _) in self.ig.bfsiter(int(region_idx), advanced=True):
if dest_func(vertex.index):
return (vertex.index, vert_dist)
if max_distance and vert_dist > max_distance:
return (None, max_distance)
return (None, max_distance)
def floodfill(self, region_idx):
'''
Expand in all directions from `region_idx` as long as new cells satisfy
the `fill_func`.
'''
if region_idx >= self.node_count():
return []
return [ v.index for v in self.ig.bfsiter(int(region_idx)) ]
def BuildGraph(cell_idxs, vor, mapping):
'''
Build a graph connecting cells that share vertices.
'''
edges = []
# map vertex_id => region_idx that touch vertex
regions_by_vertex = {}
# List all regions that share each vertex
for cell_idx in cell_idxs:
v_idx = mapping[cell_idx]
for vertex in vor.regions[v_idx]:
if vertex not in regions_by_vertex:
regions_by_vertex[vertex] = []
regions_by_vertex[vertex].append(cell_idx)
# Run through list of vertices and build edges between all connected regions
for (_, cell_idxs) in regions_by_vertex.items():
for source in cell_idxs:
for dest in cell_idxs:
if source != dest:
# print('%d -> %d' % (source, dest))
edges.append( (source, dest) )
edges.append( (dest, source) )
return Graph(edges)