-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathengine.py
421 lines (383 loc) · 15.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Adapted from
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Dict, Iterable, Optional
import torch
import torch.nn
import torch.optim
import util.dist as dist
from datasets.vidstg_eval import VidSTGEvaluator
from datasets.hcstvg_eval import HCSTVGEvaluator
from util.metrics import MetricLogger, SmoothedValue
from util.misc import targets_to
from util.optim import adjust_learning_rate, update_ema
def train_one_epoch(
model: torch.nn.Module,
criterion: Optional[torch.nn.Module],
weight_dict: Dict[str, float],
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
args,
max_norm: float = 0,
model_ema: Optional[torch.nn.Module] = None,
writer=None,
):
model.train()
if criterion is not None:
criterion.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter(
"lr_backbone", SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"lr_text_encoder", SmoothedValue(window_size=1, fmt="{value:.6f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 100
num_training_steps = int(len(data_loader) * args.epochs)
for i, batch_dict in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
curr_step = epoch * len(data_loader) + i
samples = batch_dict["samples"].to(device)
if "samples_fast" in batch_dict:
samples_fast = batch_dict["samples_fast"].to(device)
else:
samples_fast = None
durations = batch_dict["durations"]
captions = batch_dict["captions"]
targets = batch_dict["targets"]
targets = targets_to(targets, device)
# forward
memory_cache = model(
samples,
durations,
captions,
encode_and_save=True,
samples_fast=samples_fast,
)
outputs = model(
samples,
durations,
captions,
encode_and_save=False,
memory_cache=memory_cache,
)
# only keep box predictions in the annotated moment
max_duration = max(durations)
device = outputs["pred_boxes"].device
inter_idx = batch_dict["inter_idx"]
keep_list = []
for i_dur, (duration, inter) in enumerate(zip(durations, inter_idx)):
keep_list.extend(
[
elt
for elt in range(
i_dur * max_duration + inter[0],
(i_dur * max_duration) + inter[1] + 1,
)
]
)
keep = torch.tensor(keep_list).long().to(device)
outputs["pred_boxes"] = outputs["pred_boxes"][keep]
for i_aux in range(len(outputs["aux_outputs"])):
outputs["aux_outputs"][i_aux]["pred_boxes"] = outputs["aux_outputs"][i_aux][
"pred_boxes"
][keep]
b = len(durations)
targets = [
x for x in targets if len(x["boxes"])
] # keep only targets in the annotated moment
assert len(targets) == len(outputs["pred_boxes"]), (
len(outputs["pred_boxes"]),
len(targets),
)
# mask with padded positions set to False for loss computation
if args.sted:
time_mask = torch.zeros(b, outputs["pred_sted"].shape[1]).bool().to(device)
for i_dur, duration in enumerate(durations):
time_mask[i_dur, :duration] = True
else:
time_mask = None
# compute losses
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, inter_idx, time_mask))
losses = sum(
loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict
)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
adjust_learning_rate(
optimizer,
epoch,
curr_step,
num_training_steps=num_training_steps,
args=args,
)
if model_ema is not None:
update_ema(model, model_ema, args.ema_decay)
metric_logger.update(
loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled
)
if writer is not None and dist.is_main_process() and i % 100 == 0:
for k in loss_dict_reduced_unscaled:
writer.add_scalar(f"{k}", metric_logger.meters[k].avg, i)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(lr_backbone=optimizer.param_groups[1]["lr"])
metric_logger.update(lr_text_encoder=optimizer.param_groups[2]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(
model: torch.nn.Module,
criterion: Optional[torch.nn.Module],
postprocessors: Dict[str, torch.nn.Module],
weight_dict: Dict[str, float],
data_loader,
evaluator_list,
device: torch.device,
args,
):
model.eval()
if criterion is not None:
criterion.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Test:"
for i_batch, batch_dict in enumerate(
metric_logger.log_every(data_loader, 100, header)
):
samples = batch_dict["samples"].to(device)
if "samples_fast" in batch_dict:
samples_fast = batch_dict["samples_fast"].to(device)
else:
samples_fast = None
durations = batch_dict["durations"]
captions = batch_dict["captions"]
targets = batch_dict["targets"]
targets = targets_to(targets, device)
# forward
memory_cache = model(
samples,
durations,
captions,
encode_and_save=True,
samples_fast=samples_fast,
)
outputs = model(
samples,
durations,
captions,
encode_and_save=False,
memory_cache=memory_cache,
)
# only keep box predictions in the annotated moment
max_duration = max(durations)
inter_idx = batch_dict["inter_idx"]
keep_list = []
for i_dur, (duration, inter) in enumerate(zip(durations, inter_idx)):
if inter[0] >= 0:
keep_list.extend(
[
elt
for elt in range(
i_dur * max_duration + inter[0],
(i_dur * max_duration) + inter[1] + 1,
)
]
)
keep = torch.tensor(keep_list).long().to(outputs["pred_boxes"].device)
if args.test:
pred_boxes_all = outputs["pred_boxes"]
targets_all = [x for x in targets]
outputs["pred_boxes"] = outputs["pred_boxes"][keep]
for i_aux in range(len(outputs["aux_outputs"])):
outputs["aux_outputs"][i_aux]["pred_boxes"] = outputs["aux_outputs"][i_aux][
"pred_boxes"
][keep]
b = len(durations)
targets = [x for x in targets if len(x["boxes"])]
assert len(targets) == len(outputs["pred_boxes"]), (
len(targets),
len(outputs["pred_boxes"]),
)
# mask with padded positions set to False for loss computation
if args.sted:
time_mask = torch.zeros(b, outputs["pred_sted"].shape[1]).bool().to(device)
for i_dur, duration in enumerate(durations):
time_mask[i_dur, :duration] = True
else:
time_mask = None
# compute losses
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, inter_idx, time_mask))
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
# update evaluator
# if args.test:
# outputs["pred_boxes"] = pred_boxes_all
if args.test:
targets = targets_all
outputs["pred_boxes"] = pred_boxes_all
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
vidstg_res = {} if "vidstg" in postprocessors.keys() else None
vidstg_video_res = {} if "vidstg" in postprocessors.keys() else None
hcstvg_res = {} if "hcstvg" in postprocessors.keys() else None
hcstvg_video_res = {} if "hcstvg" in postprocessors.keys() else None
if "vidstg" in postprocessors.keys():
video_ids = batch_dict["video_ids"]
frames_id = batch_dict["frames_id"]
if args.sted:
pred_steds = postprocessors["vidstg"](
outputs, frames_id, video_ids=video_ids, time_mask=time_mask
)
image_ids = [t["image_id"] for t in targets]
for im_id, result in zip(image_ids, results):
vidstg_res[im_id] = {"boxes": [result["boxes"].detach().cpu().tolist()]}
qtypes = batch_dict["qtype"]
assert len(set(video_ids)) == len(qtypes)
if args.sted:
assert len(pred_steds) == len(qtypes)
for video_id, pred_sted in zip(video_ids, pred_steds):
vidstg_video_res[video_id] = {
"sted": pred_sted,
"qtype": qtypes[video_id],
}
else:
for video_id in video_ids:
vidstg_video_res[video_id] = {
"qtype": qtypes[video_id],
}
res = {
target["image_id"]: output for target, output in zip(targets, results)
}
elif "hcstvg" in postprocessors.keys():
video_ids = batch_dict["video_ids"]
frames_id = batch_dict["frames_id"]
if args.sted:
pred_steds = postprocessors["hcstvg"](
outputs, frames_id, video_ids=video_ids, time_mask=time_mask
)
image_ids = [t["image_id"] for t in targets]
for im_id, result in zip(image_ids, results):
hcstvg_res[im_id] = {"boxes": [result["boxes"].detach().cpu().tolist()]}
if args.sted:
assert len(set(video_ids)) == len(pred_steds)
for video_id, pred_sted in zip(video_ids, pred_steds):
hcstvg_video_res[video_id] = {"sted": pred_sted}
else:
hcstvg_video_res[video_id] = {}
res = {
target["image_id"]: output for target, output in zip(targets, results)
}
else:
res = {
target["image_id"].item(): output
for target, output in zip(targets, results)
}
for evaluator in evaluator_list:
if isinstance(evaluator, VidSTGEvaluator):
evaluator.update(vidstg_res)
evaluator.video_update(vidstg_video_res)
if args.test:
tsa_weights = [
outputs["aux_outputs"][i_aux]["weights"]
for i_aux in range(len(outputs["aux_outputs"]))
]
tsa_weights.append(outputs["weights"])
weights = torch.stack(tsa_weights)
ca_weights = [
outputs["aux_outputs"][i_aux]["ca_weights"]
for i_aux in range(len(outputs["aux_outputs"]))
]
ca_weights.append(outputs["ca_weights"])
ca_weights = torch.stack(ca_weights)
text_weights = ca_weights[
..., -len(memory_cache["text_memory_resized"]) :
]
spatial_weights = ca_weights[
..., : -len(memory_cache["text_memory_resized"])
].reshape(
ca_weights.shape[0],
ca_weights.shape[1],
ca_weights.shape[2],
math.ceil(samples.tensors.shape[2] / 32),
-1,
) # hw
# tokens = memory_cache['tokenized'].tokens()
evaluator.save(
weights,
text_weights,
spatial_weights,
outputs["pred_sted"],
image_ids,
video_ids,
)
elif isinstance(evaluator, HCSTVGEvaluator):
evaluator.update(hcstvg_res)
evaluator.video_update(hcstvg_video_res)
else:
evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
for evaluator in evaluator_list:
evaluator.synchronize_between_processes()
vidstg_res = None
hcstvg_res = None
for evaluator in evaluator_list:
if isinstance(evaluator, VidSTGEvaluator):
vidstg_res = evaluator.summarize()
elif isinstance(evaluator, HCSTVGEvaluator):
hcstvg_res = evaluator.summarize()
# accumulate predictions from all images
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if vidstg_res is not None:
stats["vidstg"] = vidstg_res
if hcstvg_res is not None:
stats["hcstvg"] = hcstvg_res
return stats