-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab7.py
149 lines (119 loc) · 4.16 KB
/
lab7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import random
from math import sqrt, log, sin, cos, pi
import numpy as np
from scipy.stats import chi2, norm, laplace, uniform
alpha = 0.05
INF = 10000000
X = np.arange(-1.8, 2.2, 0.2)
NORM_PARAMS = (0, 1)
def get_k(lenght: int):
return int(1 + 3.3*log(lenght, 10))
def aver(arr: np.ndarray):
return np.mean(arr)
def med(arr: np.ndarray):
return np.median(arr)
def dispers(arr: np.ndarray):
av = aver(arr)
return np.mean(np.power(arr - av, 2))
def get_normal(a, sigma, num: int) -> list:
rands = [random.random() for _ in range(num)]
res = []
for i in range(0, num - 1, 2):
res.append(a + sigma * sqrt(-2*log(rands[i])) * sin(2*pi*rands[i+1]))
res.append(a + sigma * sqrt(-2*log(rands[i])) * cos(2*pi*rands[i+1]))
if i < num - 2:
res.append(a + sigma * sqrt(-2*log(rands[i])) * sin(2*pi*rands[0]))
return res
def get_intervals(vals: np.ndarray):
# верхние границы интервалов
k = get_k(len(vals))
prop = k / len(vals)
bot, top = np.quantile(vals, prop), np.quantile(vals, 1-prop)
res = np.linspace(bot, top, k-1)
return np.append(res, INF)
def count_if(arr: np.ndarray, val_bot, val_top):
res = 0
for v in arr:
if val_bot < v <= val_top:
res += 1
return res
def get_p(a_prev, a, func=norm.cdf, func_params=NORM_PARAMS):
if a_prev == -INF:
return func(a, *func_params)
return func(a, *func_params) - func(a_prev, *func_params)
NI, PI, NPI, NI_NPI, FRAC = 'ni', 'pi', 'npi', 'ni_npi', 'frac'
def get_params(x_prev, x, vals, func=norm.cdf, func_params=NORM_PARAMS):
res = dict()
res[NI] = count_if(vals, x_prev, x)
res[PI] = float(round(get_p(x_prev, x, func, func_params), 4))
res[NPI] = float(round(len(vals) * res[PI], 2))
res[NI_NPI] = float(round(res[NI] - res[NPI], 2))
res[FRAC] = float(round(res[NI_NPI] * res[NI_NPI] / res[NPI], 4))
return res
def get_table_of_params(vals, func=norm.cdf, func_params=NORM_PARAMS):
res = []
ints = get_intervals(vals)
prev = -INF
for t in ints:
res.append(get_params(prev, t, vals, func, func_params))
prev = t
return res
def round(num, n_digits):
s = str(num)
point = s.find('.')
if len(s[point+1:]) <= n_digits:
return s
d_next = s[point + 1 + n_digits]
if int(d_next) >= 5:
add = 1
else:
add = 0
res = s[:point + n_digits]
d = int(s[point + n_digits])
return res + str(d + add)
def get_str_table(vals, params_emp):
ints = get_intervals(vals)
params = get_table_of_params(vals, func_params=params_emp)
table = '\n'
prev = '-inf'
for i in range(len(params)):
t = ints[i]
if t == INF:
t = 'inf'
else:
t = round(t, 2)
if prev != '-inf':
prev = round(prev, 2)
table += str(i+1) + ' | ' + str(prev) + ', ' + str(t) + ' | '
param = params[i]
table += str(param[NI]) + ' | ' + str(param[PI]) + ' | ' + str(param[NPI]) + ' | ' + str(param[NI_NPI]) + ' | ' + \
str(param[FRAC]) + '\n'
prev = t
results = ['S', ' -- ']
par = np.array([ [d[NI], d[PI], d[NPI], d[NI_NPI], d[FRAC]] for d in params])
sums = np.sum(par, axis=0)
results += [str(round(v, 4)) for v in sums]
table += ' | '.join(results)
return table
def main():
print('Norm, n = 100')
vals = norm.rvs(0, 1, 100)
params_emp = mu, sigma = aver(vals), sqrt(dispers(vals))
table = get_str_table(vals, params_emp)
print('mu: ', mu, '\nsigma: ', sigma)
print(table)
print('\n')
print('Laplace, n = 20')
vals = laplace.rvs(mu, sigma/sqrt(2), 20)
table = get_str_table(vals, params_emp)
print('mu: ', mu, '\nsigma: ', sigma)
print(table)
print('\n')
print('Uniform, n = 20')
vals = uniform.rvs(-sqrt(3), 2*sqrt(3), 20)
table = get_str_table(vals, params_emp)
print('mu: ', mu, '\nsigma: ', sigma)
print(table)
print('\n')
if __name__ == '__main__':
main()