forked from aws-samples/aws-application-auto-scaling-kinesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
267 lines (222 loc) · 8.07 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
'''
Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
import boto3
import json
import os
client_kinesis = boto3.client('kinesis')
client_ssm = boto3.client('ssm')
client_cloudwatch = boto3.client('cloudwatch')
client_lambda = boto3.client('lambda')
client_cloudformation = boto3.client('cloudformation')
PARAMETER_STORE = os.environ['ParameterStore']
AUTOSCALINGPOLICYOUT_ARN = ''
AUTOSCALINGPOLICYIN_ARN = ''
CLOUDWATCHALARMNAMEOUT = os.environ['CloudWatchAlarmNameOut']
CLOUDWATCHALARMNAMEIN = os.environ['CloudWatchAlarmNameIn']
def update_shards(desiredCapacity, resourceName):
# Update the shard count to the new Desired Capacity value
try:
response = client_kinesis.update_shard_count(
StreamName=resourceName,
TargetShardCount=int(desiredCapacity),
ScalingType='UNIFORM_SCALING'
)
print("Response: ", response)
scalingStatus = "InProgress"
#need also to update alarm threshold using the put_metric_alarm
update_alarm_out(desiredCapacity, resourceName)
update_alarm_in(desiredCapacity, resourceName)
# In case of error of updating the sharding, raise an exception. Possible cause, you cannot reshard more than twice a day
except Exception as e:
print (e)
failureReason = str(e)
scalingStatus = "Failed"
pass
return scalingStatus
#fuction to update scale out alarm threshol
def update_alarm_out(shards, stream):
new_threshold = (1000 * shards * 60)*80/100 #assuming alarm will fire at 80% of incoming records
try:
set_alarm = client_cloudwatch.put_metric_alarm(
AlarmName=CLOUDWATCHALARMNAMEOUT,
AlarmDescription='incomingRecord exceeds threshold',
MetricName='IncomingRecords',
Namespace='AWS/Kinesis',
Dimensions=[
{
'Name':'StreamName',
'Value':stream
}
],
Statistic='Sum',
Period=60,
EvaluationPeriods=1,
Threshold=new_threshold,
ComparisonOperator='GreaterThanThreshold',
AlarmActions=[
AUTOSCALINGPOLICYOUT_ARN
]
)
except Exception as e:
print (e)
#fuction to update scale in alarm threshol
def update_alarm_in(shards, stream):
new_threshold = (1000 * shards * 60)*80/100 #assuming alarm will fire at 80% of incoming records
try:
set_alarm = client_cloudwatch.put_metric_alarm(
AlarmName=CLOUDWATCHALARMNAMEIN,
AlarmDescription='incomingRecord below threshold',
MetricName='IncomingRecords',
Namespace='AWS/Kinesis',
Dimensions=[
{
'Name':'StreamName',
'Value':stream
}
],
Statistic='Sum',
Period=300,
EvaluationPeriods=3,
Threshold=new_threshold,
ComparisonOperator='LessThanThreshold',
AlarmActions=[
AUTOSCALINGPOLICYIN_ARN
]
)
except Exception as e:
print (e)
def response_function(status_code, response_body):
return_json = {
'statusCode': status_code,
'body': json.dumps(response_body) if response_body else json.dumps({}),
'headers': {
'Content-Type': 'application/json',
},
}
# log response
print (return_json)
return return_json
#trick for updating environment variable with application autoscaling arn (need to update all the current variables)
def autoscaling_policy_arn(context):
print (context.function_name)
function_name = context.function_name
stack_name = context.function_name.split('LambdaScaler')[0][:-1]
print (stack_name)
response = client_cloudformation.describe_stack_resources(
StackName=stack_name,
LogicalResourceId='AutoScalingPolicyOut'
)
AutoScalingPolicyOut = response['StackResources'][0]['PhysicalResourceId']
print ('Autoscaling Policy Out: ' +AutoScalingPolicyOut)
response2 = client_cloudformation.describe_stack_resources(
StackName=stack_name,
LogicalResourceId='AutoScalingPolicyIn'
)
AutoScalingPolicyIn = response2['StackResources'][0]['PhysicalResourceId']
print ('Autoscaling Policy In: ' +AutoScalingPolicyIn)
response = client_lambda.update_function_configuration(
FunctionName=function_name,
Timeout=3,
Environment={
'Variables' : {
'AutoScalingPolicyOut': AutoScalingPolicyOut,
'AutoScalingPolicyIn': AutoScalingPolicyIn,
'ParameterStore': PARAMETER_STORE,
'CloudWatchAlarmNameOut': CLOUDWATCHALARMNAMEOUT,
'CloudWatchAlarmNameIn': CLOUDWATCHALARMNAMEIN
}
}
)
print (response)
return
def lambda_handler(event, context):
# log the event
print (json.dumps(event))
# get Stream name
if 'scalableTargetDimensionId' in event['pathParameters']:
resourceName = event['pathParameters']['scalableTargetDimensionId']
print (resourceName)
else:
message = "Error, scalableTargetDimensionId not found"
return response_function(400, str(message))
# try to get information of the Kinesis stream
try:
response = client_kinesis.describe_stream_summary(
StreamName=resourceName,
)
print(response)
streamStatus = response['StreamDescriptionSummary']['StreamStatus']
shardsNumber = response['StreamDescriptionSummary']['OpenShardCount']
actualCapacity = shardsNumber
except Exception as e:
message = "Error, cannot find a Kinesis stream called " + resourceName
return response_function(404, message)
# try to retrive the desired capacity from ParameterStore
response = client_ssm.get_parameter(
Name=PARAMETER_STORE
)
print(response)
if 'Parameter' in response:
if 'Value' in response['Parameter']:
desiredCapacity = response['Parameter']['Value']
print(desiredCapacity)
else:
# if I do not have an entry in ParameterStore, I assume that the desiredCapacity is like the actualCapacity
desiredCapacity = actualCapacity
if streamStatus == "UPDATING":
scalingStatus = "InProgress"
elif streamStatus == "ACTIVE":
scalingStatus = "Successful"
if event['httpMethod'] == "PATCH":
# Check whether autoscaling is calling to change the Desired Capacity
if 'desiredCapacity' in event['body']:
desiredCapacityBody = json.loads(event['body'])
desiredCapacityBody = desiredCapacityBody['desiredCapacity']
# Check whether the new desired capacity is negative. If so, I need to calculate the new desired capacity
if int(desiredCapacityBody) >= 0:
desiredCapacity = desiredCapacityBody
# Store the new desired capacity in a ParamenterStore
response = client_ssm.put_parameter(
Name=PARAMETER_STORE,
Value=str(int(desiredCapacity)),
Type='String',
Overwrite=True
)
print(response)
print ("Trying to set capacity to "+ str(desiredCapacity))
global AUTOSCALINGPOLICYOUT_ARN
global AUTOSCALINGPOLICYIN_ARN
if 'AutoScalingPolicyOut' and 'AutoScalingPolicyIn' not in os.environ:
autoscaling_policy_arn(context)
AUTOSCALINGPOLICYOUT_ARN = os.environ['AutoScalingPolicyOut']
AUTOSCALINGPOLICYIN_ARN = os.environ['AutoScalingPolicyIn']
scalingStatus = update_shards(desiredCapacity,resourceName)
if scalingStatus == "Successful" and float(desiredCapacity) != float(actualCapacity):
scalingStatus = update_shards(desiredCapacity,resourceName)
returningJson = {
"actualCapacity": float(actualCapacity),
"desiredCapacity": float(desiredCapacity),
"dimensionName": resourceName,
"resourceName": resourceName,
"scalableTargetDimensionId": resourceName,
"scalingStatus": scalingStatus,
"version": "MyVersion"
}
try:
returningJson['failureReason'] = failureReason
except:
pass
print(returningJson)
return response_function(200, returningJson)