forked from 12345Matt/input-aware-backdoor-attack-release
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
128 lines (107 loc) · 4.23 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch.utils.data as data
import torch
import torchvision
import torchvision.transforms as transforms
import os
import csv
import config
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
import cv2
import numpy as np
class ColorDepthShrinking(object):
def __init__(self, c=3):
self.t = 1 << int(8-c)
def __call__(self, img):
im = np.asarray(img)
im = (im/self.t).astype('uint8') * self.t
img = Image.fromarray(im.astype('uint8'))
return img
def __repr__(self):
return self.__class__.__name__ + '(t={})'.format(self.t)
class Smoothing(object):
def __init__(self, k=3):
self.k = k
def __call__(self, img):
im = np.asarray(img)
im = cv2.GaussianBlur(im, (self.k, self.k), 0)
img = Image.fromarray(im.astype('uint8'))
return img
def __repr__(self):
return self.__class__.__name__ + '(k={})'.format(self.k)
def get_transform(opt, train=True, c=0, k=0):
transforms_list = []
transforms_list.append(transforms.Resize((opt.input_height, opt.input_width)))
if(train):
transforms_list.append(transforms.RandomCrop((opt.input_height, opt.input_width), padding=opt.random_crop))
if(opt.dataset != 'mnist'):
transforms_list.append(transforms.RandomRotation(opt.random_rotation))
if(opt.dataset == 'cifar10'):
transforms_list.append(transforms.RandomHorizontalFlip(p=0.5))
if c > 0:
transforms_list.append(ColorDepthShrinking(c))
if k > 0:
transforms_list.append(Smoothing(k))
transforms_list.append(transforms.ToTensor())
if(opt.dataset == 'cifar10'):
transforms_list.append(transforms.Normalize([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]))
elif(opt.dataset == 'mnist'):
transforms_list.append(transforms.Normalize([0.5], [0.5]))
elif(opt.dataset == 'gtsrb'):
pass
else:
raise Exception("Invalid Dataset")
return transforms.Compose(transforms_list)
class GTSRB(data.Dataset):
def __init__(self, opt, train, transforms):
super(GTSRB, self).__init__()
if(train):
self.data_folder = os.path.join(opt.data_root, 'GTSRB/Train')
self.images, self.labels = self._get_data_train_list()
else:
self.data_folder = os.path.join(opt.data_root, 'GTSRB/Test')
self.images, self.labels = self._get_data_test_list()
self.transforms = transforms
def _get_data_train_list(self):
images = []
labels = []
for c in range(0,43):
prefix = self.data_folder + '/' + format(c, '05d') + '/'
gtFile = open(prefix + 'GT-'+ format(c, '05d') + '.csv')
gtReader = csv.reader(gtFile, delimiter=';')
next(gtReader)
for row in gtReader:
images.append(prefix + row[0])
labels.append(int(row[7]))
gtFile.close()
return images, labels
def _get_data_test_list(self):
images = []
labels = []
prefix = os.path.join(self.data_folder, 'GT-final_test.csv')
gtFile = open(prefix)
gtReader = csv.reader(gtFile, delimiter=';')
next(gtReader)
for row in gtReader:
images.append(self.data_folder + '/' + row[0])
labels.append(int(row[7]))
return images, labels
def __len__(self):
return len(self.images)
def __getitem__(self, index):
image = Image.open(self.images[index])
image = self.transforms(image)
label = self.labels[index]
return image, label
def get_dataloader(opt, train=True, c=0, k=0):
transform = get_transform(opt, train, c=c, k=k)
if(opt.dataset == 'gtsrb'):
dataset = GTSRB(opt, train, transform)
elif(opt.dataset == 'mnist'):
dataset = torchvision.datasets.MNIST(opt.data_root, train, transform, download=True)
elif(opt.dataset == 'cifar10'):
dataset = torchvision.datasets.CIFAR10(opt.data_root, train, transform, download=True)
else:
raise Exception('Invalid dataset')
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchsize, num_workers=opt.num_workers, shuffle=True)
return dataloader