-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlec05.html
1036 lines (1021 loc) · 969 KB
/
lec05.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="pandoc" />
<meta name="author" content="DJM" />
<meta name="date" content="2018-10-23" />
<title>Lecture 5</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
body
{
margin: 0 0 0 0;
padding: 0 0 0 0;
width: 100%;
height: 100%;
color: black;
background-color: white;
font-family: "Gill Sans MT", "Gill Sans", GillSans, sans-serif;
font-size: 14pt;
}
div.toolbar {
position: fixed; z-index: 200;
top: auto; bottom: 0; left: 0; right: 0;
height: 1.2em; text-align: right;
padding-left: 1em;
padding-right: 1em; font-size: 60%;
color: DimGray;
background-color: rgb(240,240,240);
border-top: solid 1px rgb(180,180,180);
}
div.toolbar span.copyright {
color: DimGray;
margin-left: 0.5em;
}
div.initial_prompt {
position: absolute;
z-index: 1000;
bottom: 1.2em;
width: 100%;
background-color: rgb(200,200,200);
opacity: 0.35;
background-color: rgb(200,200,200, 0.35);
cursor: pointer;
}
div.initial_prompt p.help {
text-align: center;
}
div.initial_prompt p.close {
text-align: right;
font-style: italic;
}
div.slidy_toc {
position: absolute;
z-index: 300;
width: 60%;
max-width: 30em;
height: 30em;
overflow: auto;
top: auto;
right: auto;
left: 4em;
bottom: 4em;
padding: 1em;
background: rgb(240,240,240);
border-style: solid;
border-width: 2px;
font-size: 60%;
}
div.slidy_toc .toc_heading {
text-align: center;
width: 100%;
margin: 0;
margin-bottom: 1em;
border-bottom-style: solid;
border-bottom-color: rgb(180,180,180);
border-bottom-width: 1px;
}
div.slide {
z-index: 20;
margin: 0 0 0 0;
padding-top: 0;
padding-bottom: 0;
padding-left: 20px;
padding-right: 20px;
border-width: 0;
clear: both;
top: 0;
bottom: 0;
left: 0;
right: 0;
line-height: 120%;
background-color: transparent;
}
div.background {
display: none;
}
div.handout {
margin-left: 20px;
margin-right: 20px;
}
div.slide.titlepage {
text-align: center;
}
div.slide.titlepage h1 {
padding-top: 10%;
margin-right: 0;
}
div.slide h1 {
padding-left: 0;
padding-right: 20pt;
padding-top: 4pt;
padding-bottom: 4pt;
margin-top: 0;
margin-left: 0;
margin-right: 60pt;
margin-bottom: 0.5em;
display: block; font-size: 160%;
line-height: 1.2em;
background: transparent;
}
@media screen and (max-device-width: 1024px)
{
div.slide { font-size: 100%; }
}
@media screen and (max-device-width: 800px)
{
div.slide { font-size: 200%; }
div.slidy_toc {
top: 1em;
left: 1em;
right: auto;
width: 80%;
font-size: 180%;
}
}
div.toc-heading {
width: 100%;
border-bottom: solid 1px rgb(180,180,180);
margin-bottom: 1em;
text-align: center;
}
img {
image-rendering: optimize-quality;
}
pre {
font-size: 80%;
font-weight: bold;
line-height: 120%;
padding-top: 0.2em;
padding-bottom: 0.2em;
padding-left: 1em;
padding-right: 1em;
border-style: solid;
border-left-width: 1em;
border-top-width: thin;
border-right-width: thin;
border-bottom-width: thin;
border-color: #95ABD0;
color: #00428C;
background-color: #E4E5E7;
}
li pre { margin-left: 0; }
blockquote { font-style: italic }
img { background-color: transparent }
p.copyright { font-size: smaller }
.center { text-align: center }
.footnote { font-size: smaller; margin-left: 2em; }
a img { border-width: 0; border-style: none }
a:visited { color: navy }
a:link { color: navy }
a:hover { color: red; text-decoration: underline }
a:active { color: red; text-decoration: underline }
a {text-decoration: none}
.toolbar a:link {color: blue}
.toolbar a:visited {color: blue}
.toolbar a:active {color: red}
.toolbar a:hover {color: red}
ul { list-style-type: square; }
ul ul { list-style-type: disc; }
ul ul ul { list-style-type: circle; }
ul ul ul ul { list-style-type: disc; }
li { margin-left: 0.5em; margin-top: 0.5em; }
li li { font-size: 85%; font-style: italic }
li li li { font-size: 85%; font-style: normal }
div dt
{
margin-left: 0;
margin-top: 1em;
margin-bottom: 0.5em;
font-weight: bold;
}
div dd
{
margin-left: 2em;
margin-bottom: 0.5em;
}
p,pre,ul,ol,blockquote,h2,h3,h4,h5,h6,dl,table {
margin-left: 1em;
margin-right: 1em;
}
p.subhead { font-weight: bold; margin-top: 2em; }
.smaller { font-size: smaller }
.bigger { font-size: 130% }
td,th { padding: 0.2em }
ul {
margin: 0.5em 1.5em 0.5em 1.5em;
padding: 0;
}
ol {
margin: 0.5em 1.5em 0.5em 1.5em;
padding: 0;
}
ul { list-style-type: square; }
ul ul { list-style-type: disc; }
ul ul ul { list-style-type: circle; }
ul ul ul ul { list-style-type: disc; }
ul li { list-style: square;
margin: 0.1em 0em 0.6em 0;
padding: 0 0 0 0;
line-height: 140%;
}
ol li { margin: 0.1em 0em 0.6em 1.5em;
padding: 0 0 0 0px;
line-height: 140%;
list-style-type: decimal;
}
li ul li { font-size: 85%; font-style: italic;
list-style-type: disc;
background: transparent;
padding: 0 0 0 0;
}
li li ul li { font-size: 85%; font-style: normal;
list-style-type: circle;
background: transparent;
padding: 0 0 0 0;
}
li li li ul li {
list-style-type: disc;
background: transparent;
padding: 0 0 0 0;
}
li ol li {
list-style-type: decimal;
}
li li ol li {
list-style-type: decimal;
}
ol.outline li:hover { cursor: pointer }
ol.outline li.nofold:hover { cursor: default }
ul.outline li:hover { cursor: pointer }
ul.outline li.nofold:hover { cursor: default }
ol.outline { list-style:decimal; }
ol.outline ol { list-style-type:lower-alpha }
ol.outline li.nofold {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ol.outline li.unfolded {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ol.outline li.folded {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ol.outline li.unfolded:hover {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ol.outline li.folded:hover {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ul.outline li.nofold {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ul.outline li.unfolded {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ul.outline li.folded {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ul.outline li.unfolded:hover {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
ul.outline li.folded:hover {
padding: 0 0 0 20px;
background: transparent url() no-repeat 0px 0.5em;
}
a.titleslide { font-weight: bold; font-style: italic }
img.hidden { display: none; visibility: hidden }
div.initial_prompt { display: none; visibility: hidden }
div.slide {
visibility: visible;
position: inherit;
}
div.handout {
border-top-style: solid;
border-top-width: thin;
border-top-color: black;
}
@media screen {
.hidden { display: none; visibility: visible }
div.slide.hidden { display: block; visibility: visible }
div.handout.hidden { display: block; visibility: visible }
div.background { display: none; visibility: hidden }
body.single_slide div.initial_prompt { display: block; visibility: visible }
body.single_slide div.background { display: block; visibility: visible }
body.single_slide div.background.hidden { display: none; visibility: hidden }
body.single_slide .invisible { visibility: hidden }
body.single_slide .hidden { display: none; visibility: hidden }
body.single_slide div.slide { position: absolute }
body.single_slide div.handout { display: none; visibility: hidden }
}
@media print {
.hidden { display: block; visibility: visible }
div.slide pre { font-size: 60%; padding-left: 0.5em; }
div.toolbar { display: none; visibility: hidden; }
div.slidy_toc { display: none; visibility: hidden; }
div.background { display: none; visibility: hidden; }
div.slide { page-break-before: always }
div.slide.first-slide { page-break-before: avoid }
}
.jslider table {
margin-left: 0em;
margin-right: 0em;
}
table.dataTable, .shiny-datatable-output div {
font-size: 14pt;
}
.dataTables_info, .dataTables_paginate {
font-size: 19px;
}
pre.sourceCode, code.sourceCode {
font-size: 80%;
}
label, button, input, select, textarea {
font-size: 14pt;
}
ul.nav, ul.nav li {
list-style-type: none;
}
</style>
<script src="data:application/javascript;base64,Lyogc2xpZHkuanMKCiAgIENvcHlyaWdodCAoYykgMjAwNS0yMDEzIFczQyAoTUlULCBFUkNJTSwgS2VpbyksIEFsbCBSaWdodHMgUmVzZXJ2ZWQuCiAgIFczQyBsaWFiaWxpdHksIHRyYWRlbWFyaywgZG9jdW1lbnQgdXNlIGFuZCBzb2Z0d2FyZSBsaWNlbnNpbmcKICAgcnVsZXMgYXBwbHksIHNlZToKCiAgIGh0dHA6Ly93d3cudzMub3JnL0NvbnNvcnRpdW0vTGVnYWwvY29weXJpZ2h0LWRvY3VtZW50cwogICBodHRwOi8vd3d3LnczLm9yZy9Db25zb3J0aXVtL0xlZ2FsL2NvcHlyaWdodC1zb2Z0d2FyZQoKICAgRGVmaW5lcyBzaW5nbGUgbmFtZSAidzNjX3NsaWR5IiBpbiBnbG9iYWwgbmFtZXNwYWNlCiAgIEFkZHMgZXZlbnQgaGFuZGxlcnMgd2l0aG91dCB0cmFtcGxpbmcgb24gYW55IG90aGVycwoqLwoKLy8gdGhlIHNsaWR5IG9iamVjdCBpbXBsZW1lbnRhdGlvbgp2YXIgdzNjX3NsaWR5ID0gewogIC8vIGNsYXNzaWZ5IHdoaWNoIGtpbmQgb2YgYnJvd3NlciB3ZSdyZSBydW5uaW5nIHVuZGVyCiAgbnNfcG9zOiAodHlwZW9mIHdpbmRvdy5wYWdlWU9mZnNldCE9J3VuZGVmaW5lZCcpLAogIGtodG1sOiAoKG5hdmlnYXRvci51c2VyQWdlbnQpLmluZGV4T2YoIktIVE1MIikgPj0gMCA/IHRydWUgOiBmYWxzZSksCiAgb3BlcmE6ICgobmF2aWdhdG9yLnVzZXJBZ2VudCkuaW5kZXhPZigiT3BlcmEiKSA+PSAwID8gdHJ1ZSA6IGZhbHNlKSwKICBpcGFkOiAoKG5hdmlnYXRvci51c2VyQWdlbnQpLmluZGV4T2YoImlQYWQiKSA+PSAwID8gdHJ1ZSA6IGZhbHNlKSwKICBpcGhvbmU6ICgobmF2aWdhdG9yLnVzZXJBZ2VudCkuaW5kZXhPZigiaVBob25lIikgPj0gMCA/IHRydWUgOiBmYWxzZSksCiAgYW5kcm9pZDogKChuYXZpZ2F0b3IudXNlckFnZW50KS5pbmRleE9mKCJBbmRyb2lkIikgPj0gMCA/IHRydWUgOiBmYWxzZSksCiAgaWU6ICh0eXBlb2YgZG9jdW1lbnQuYWxsICE9ICJ1bmRlZmluZWQiICYmICF0aGlzLm9wZXJhKSwKICBpZTY6ICghdGhpcy5uc19wb3MgJiYgbmF2aWdhdG9yLnVzZXJBZ2VudC5pbmRleE9mKCJNU0lFIDYiKSAhPSAtMSksCiAgaWU3OiAoIXRoaXMubnNfcG9zICYmIG5hdmlnYXRvci51c2VyQWdlbnQuaW5kZXhPZigiTVNJRSA3IikgIT0gLTEpLAogIGllODogKCF0aGlzLm5zX3BvcyAmJiBuYXZpZ2F0b3IudXNlckFnZW50LmluZGV4T2YoIk1TSUUgOCIpICE9IC0xKSwKICBpZTk6ICghdGhpcy5uc19wb3MgJiYgbmF2aWdhdG9yLnVzZXJBZ2VudC5pbmRleE9mKCJNU0lFIDkiKSAhPSAtMSksCgogIC8vIGRhdGEgZm9yIHN3aXBlIGFuZCBkb3VibGUgdGFwIGRldGVjdGlvbiBvbiB0b3VjaCBzY3JlZW5zCiAgbGFzdF90YXA6IDAsCiAgcHJldl90YXA6IDAsCiAgc3RhcnRfeDogMCwKICBzdGFydF95OiAwLAogIGRlbHRhX3g6IDAsCiAgZGVsdGFfeTogMCwKCiAgLy8gYXJlIHdlIHJ1bm5pbmcgYXMgWEhUTUw/IChkb2Vzbid0IHdvcmsgb24gT3BlcmEpCiAgaXNfeGh0bWw6IC94bWwvLnRlc3QoZG9jdW1lbnQuY29udGVudFR5cGUpLAoKICBzbGlkZV9udW1iZXI6IDAsIC8vIGludGVnZXIgc2xpZGUgY291bnQ6IDAsIDEsIDIsIC4uLgogIHNsaWRlX251bWJlcl9lbGVtZW50OiBudWxsLCAvLyBlbGVtZW50IGNvbnRhaW5pbmcgc2xpZGUgbnVtYmVyCiAgc2xpZGVzOiBbXSwgLy8gc2V0IHRvIGFycmF5IG9mIHNsaWRlIGRpdidzCiAgbm90ZXM6IFtdLCAvLyBzZXQgdG8gYXJyYXkgb2YgaGFuZG91dCBkaXYncwogIGJhY2tncm91bmRzOiBbXSwgLy8gc2V0IHRvIGFycmF5IG9mIGJhY2tncm91bmQgZGl2J3MKICBvYnNlcnZlcnM6IFtdLCAvLyBsaXN0IG9mIG9ic2VydmVyIGZ1bmN0aW9ucwogIHRvb2xiYXI6IG51bGwsIC8vIGVsZW1lbnQgY29udGFpbmluZyB0b29sYmFyCiAgdGl0bGU6IG51bGwsIC8vIGRvY3VtZW50IHRpdGxlCiAgbGFzdF9zaG93bjogbnVsbCwgLy8gbGFzdCBpbmNyZW1lbnRhbGx5IHNob3duIGl0ZW0KICBlb3M6IG51bGwsICAvLyBzcGFuIGVsZW1lbnQgZm9yIGVuZCBvZiBzbGlkZSBpbmRpY2F0b3IKICB0b2M6IG51bGwsIC8vIHRhYmxlIG9mIGNvbnRlbnRzCiAgb3V0bGluZTogbnVsbCwgLy8gb3V0bGluZSBlbGVtZW50IHdpdGggdGhlIGZvY3VzCiAgc2VsZWN0ZWRfdGV4dF9sZW46IDAsIC8vIGxlbmd0aCBvZiBkcmFnIHNlbGVjdGlvbiBvbiBkb2N1bWVudAogIHZpZXdfYWxsOiAwLCAgLy8gMSB0byB2aWV3IGFsbCBzbGlkZXMgKyBoYW5kb3V0cwogIHdhbnRfdG9vbGJhcjogdHJ1ZSwgIC8vIHVzZXIgcHJlZmVyZW5jZSB0byBzaG93L2hpZGUgdG9vbGJhcgogIG1vdXNlX2NsaWNrX2VuYWJsZWQ6IHRydWUsIC8vIGVuYWJsZXMgbGVmdCBjbGljayBmb3IgbmV4dCBzbGlkZQogIHNjcm9sbF9oYWNrOiAwLCAvLyBJRSB3b3JrIGFyb3VuZCBmb3IgcG9zaXRpb246IGZpeGVkCiAgZGlzYWJsZV9zbGlkZV9jbGljazogZmFsc2UsICAvLyB1c2VkIGJ5IGNsaWNrZWQgYW5jaG9ycwoKICBsYW5nOiAiZW4iLCAvLyB1cGRhdGVkIHRvIGxhbmd1YWdlIHNwZWNpZmllZCBieSBodG1sIGZpbGUKCiAgaGVscF9hbmNob3I6IG51bGwsIC8vIHVzZWQgZm9yIGtleWJvYXJkIGZvY3VzIGhhY2sgaW4gc2hvd1Rvb2xiYXIoKQogIGhlbHBfcGFnZTogImh0dHA6Ly93d3cudzMub3JnL1RhbGtzL1Rvb2xzL1NsaWR5Mi9oZWxwL2hlbHAuaHRtbCIsCiAgaGVscF90ZXh0OiAiTmF2aWdhdGUgd2l0aCBtb3VzZSBjbGljaywgc3BhY2UgYmFyLCBDdXJzb3IgTGVmdC9SaWdodCwgIiArCiAgICAgICAgICAgICAib3IgUGcgVXAgYW5kIFBnIERuLiBVc2UgUyBhbmQgQiB0byBjaGFuZ2UgZm9udCBzaXplLiIsCgogIHNpemVfaW5kZXg6IDAsCiAgc2l6ZV9hZGp1c3RtZW50OiAwLAogIHNpemVzOiAgbmV3IEFycmF5KCIxMHB0IiwgIjEycHQiLCAiMTRwdCIsICIxNnB0IiwgIjE4cHQiLCAiMjBwdCIsCiAgICAgICAgICAgICAgICAgICAgIjIycHQiLCAiMjRwdCIsICIyNnB0IiwgIjI4cHQiLCAiMzBwdCIsICIzMnB0IiksCgogIC8vIG5lZWRlZCBmb3IgZWZmaWNpZW50IHJlc2l6aW5nCiAgbGFzdF93aWR0aDogMCwKICBsYXN0X2hlaWdodDogMCwKCgogIC8vIE5lZWRlZCBmb3IgY3Jvc3MgYnJvd3NlciBzdXBwb3J0IGZvciByZWxhdGl2ZSB3aWR0aC9oZWlnaHQgb24KICAvLyBvYmplY3QgZWxlbWVudHMuIFRoZSB3b3JrIGFyb3VuZCBpcyB0byBzYXZlIHdpZHRoL2hlaWdodCBhdHRyaWJ1dGVzCiAgLy8gYW5kIHRoZW4gdG8gcmVjb21wdXRlIGFic29sdXRlIHdpZHRoL2hlaWdodCBkaW1lbnNpb25zIG9uIHJlc2l6aW5nCiAgIG9iamVjdHM6IFtdLAoKICAvLyBhdHRhY2ggaW5pdGlhbGlhdGlvbiBldmVudCBoYW5kbGVycwogIHNldF91cDogZnVuY3Rpb24gKCkgewogICAgdmFyIGluaXQgPSBmdW5jdGlvbigpIHsgdzNjX3NsaWR5LmluaXQoKTsgfTsKICAgIGlmICh0eXBlb2Ygd2luZG93LmFkZEV2ZW50TGlzdGVuZXIgIT0gInVuZGVmaW5lZCIpCiAgICAgIHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKCJsb2FkIiwgaW5pdCwgZmFsc2UpOwogICAgZWxzZQogICAgICB3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsIGluaXQpOwogIH0sCgogIGhpZGVfc2xpZGVzOiBmdW5jdGlvbiAoKSB7CiAgICBpZiAoZG9jdW1lbnQuYm9keSAmJiAhdzNjX3NsaWR5LmluaXRpYWxpemVkKQogICAgICBkb2N1bWVudC5ib2R5LnN0eWxlLnZpc2liaWxpdHkgPSAiaGlkZGVuIjsKICAgIGVsc2UKICAgICAgc2V0VGltZW91dCh3M2Nfc2xpZHkuaGlkZV9zbGlkZXMsIDUwKTsKICB9LAoKICAvLyBoYWNrIHRvIHBlcnN1YWRlIElFIHRvIGNvbXB1dGUgY29ycmVjdCBkb2N1bWVudCBoZWlnaHQKICAvLyBhcyBuZWVkZWQgZm9yIHNpbXVsYXRpbmcgZml4ZWQgcG9zaXRpb25pbmcgb2YgdG9vbGJhcgogIGllX2hhY2s6IGZ1bmN0aW9uICgpIHsKICAgIHdpbmRvdy5yZXNpemVCeSgwLC0xKTsKICAgIHdpbmRvdy5yZXNpemVCeSgwLCAxKTsKICB9LAoKICBpbml0OiBmdW5jdGlvbiAoKSB7CiAgICAvL2FsZXJ0KCJzbGlkeSBzdGFydGluZyB0ZXN0IDEwIik7CiAgICBkb2N1bWVudC5ib2R5LnN0eWxlLnZpc2liaWxpdHkgPSAidmlzaWJsZSI7CiAgICB0aGlzLmluaXRfbG9jYWxpemF0aW9uKCk7CiAgICB0aGlzLmFkZF90b29sYmFyKCk7CiAgICB0aGlzLndyYXBfaW1wbGljaXRfc2xpZGVzKCk7CiAgICB0aGlzLmNvbGxlY3Rfc2xpZGVzKCk7CiAgICB0aGlzLmNvbGxlY3Rfbm90ZXMoKTsKICAgIHRoaXMuY29sbGVjdF9iYWNrZ3JvdW5kcygpOwogICAgdGhpcy5vYmplY3RzID0gZG9jdW1lbnQuYm9keS5nZXRFbGVtZW50c0J5VGFnTmFtZSgib2JqZWN0Iik7CiAgICB0aGlzLnBhdGNoX2FuY2hvcnMoKTsKICAgIHRoaXMuc2xpZGVfbnVtYmVyID0gdGhpcy5maW5kX3NsaWRlX251bWJlcihsb2NhdGlvbi5ocmVmKTsKICAgIHdpbmRvdy5vZmZzY3JlZW5idWZmZXJpbmcgPSB0cnVlOwogICAgdGhpcy5zaXplX2FkanVzdG1lbnQgPSB0aGlzLmZpbmRfc2l6ZV9hZGp1c3QoKTsKICAgIHRoaXMudGltZV9sZWZ0ID0gdGhpcy5maW5kX2R1cmF0aW9uKCk7CiAgICB0aGlzLmhpZGVfaW1hZ2VfdG9vbGJhcigpOyAgLy8gc3VwcHJlc3MgSUUgaW1hZ2UgdG9vbGJhciBwb3B1cAogICAgdGhpcy5pbml0X291dGxpbmVyKCk7ICAvLyBhY3RpdmF0ZSBmb2xkL3VuZm9sZCBzdXBwb3J0CiAgICB0aGlzLnRpdGxlID0gZG9jdW1lbnQudGl0bGU7CiAgICB0aGlzLmtleWJvYXJkbGVzcyA9ICh0aGlzLmlwYWR8fHRoaXMuaXBob25lfHx0aGlzLmFuZHJvaWQpOwoKICAgIGlmICh0aGlzLmtleWJvYXJkbGVzcykKICAgIHsKICAgICAgdzNjX3NsaWR5LnJlbW92ZV9jbGFzcyh3M2Nfc2xpZHkudG9vbGJhciwgImhpZGRlbiIpCiAgICAgIHRoaXMud2FudF90b29sYmFyID0gMDsKICAgIH0KCiAgICAvLyB3b3JrIGFyb3VuZCBmb3Igb3BlcmEgYnVnCiAgICB0aGlzLmlzX3hodG1sID0gKGRvY3VtZW50LmJvZHkudGFnTmFtZSA9PSAiQk9EWSIgPyBmYWxzZSA6IHRydWUpOwoKICAgIGlmICh0aGlzLnNsaWRlcy5sZW5ndGggPiAwKQogICAgewogICAgICB2YXIgc2xpZGUgPSB0aGlzLnNsaWRlc1t0aGlzLnNsaWRlX251bWJlcl07CiAgIAogICAgICBpZiAodGhpcy5zbGlkZV9udW1iZXIgPiAwKQogICAgICB7CiAgICAgICAgdGhpcy5zZXRfdmlzaWJpbGl0eV9hbGxfaW5jcmVtZW50YWwoInZpc2libGUiKTsKICAgICAgICB0aGlzLmxhc3Rfc2hvd24gPSB0aGlzLnByZXZpb3VzX2luY3JlbWVudGFsX2l0ZW0obnVsbCk7CiAgICAgICAgdGhpcy5zZXRfZW9zX3N0YXR1cyh0cnVlKTsKICAgICAgfQogICAgICBlbHNlCiAgICAgIHsKICAgICAgICB0aGlzLmxhc3Rfc2hvd24gPSBudWxsOwogICAgICAgIHRoaXMuc2V0X3Zpc2liaWxpdHlfYWxsX2luY3JlbWVudGFsKCJoaWRkZW4iKTsKICAgICAgICB0aGlzLnNldF9lb3Nfc3RhdHVzKCF0aGlzLm5leHRfaW5jcmVtZW50YWxfaXRlbSh0aGlzLmxhc3Rfc2hvd24pKTsKICAgICAgfQoKICAgICAgdGhpcy5zZXRfbG9jYXRpb24oKTsKICAgICAgdGhpcy5hZGRfY2xhc3ModGhpcy5zbGlkZXNbMF0sICJmaXJzdC1zbGlkZSIpOwogICAgICB3M2Nfc2xpZHkuc2hvd19zbGlkZShzbGlkZSk7CiAgICB9CgogICAgdGhpcy50b2MgPSB0aGlzLnRhYmxlX29mX2NvbnRlbnRzKCk7CgogICAgdGhpcy5hZGRfaW5pdGlhbF9wcm9tcHQoKTsKCiAgICAvLyBiaW5kIGV2ZW50IGhhbmRsZXJzIHdpdGhvdXQgaW50ZXJmZXJpbmcgd2l0aCBjdXN0b20gcGFnZSBzY3JpcHRzCiAgICAvLyBUYXAgZXZlbnRzIGJlaGF2ZSB0b28gd2VpcmRseSB0byBzdXBwb3J0IGNsaWNrcyByZWxpYWJseSBvbgogICAgLy8gaVBob25lIGFuZCBpUGFkLCBzbyBleGNsdWRlIHRoZXNlIGZyb20gY2xpY2sgaGFuZGxlcgoKICAgIGlmICghdGhpcy5rZXlib2FyZGxlc3MpCiAgICB7CiAgICAgIHRoaXMuYWRkX2xpc3RlbmVyKGRvY3VtZW50LmJvZHksICJjbGljayIsIHRoaXMubW91c2VfYnV0dG9uX2NsaWNrKTsKICAgICAgdGhpcy5hZGRfbGlzdGVuZXIoZG9jdW1lbnQuYm9keSwgIm1vdXNlZG93biIsIHRoaXMubW91c2VfYnV0dG9uX2Rvd24pOwogICAgfQoKICAgIHRoaXMuYWRkX2xpc3RlbmVyKGRvY3VtZW50LCAia2V5ZG93biIsIHRoaXMua2V5X2Rvd24pOwogICAgdGhpcy5hZGRfbGlzdGVuZXIoZG9jdW1lbnQsICJrZXlwcmVzcyIsIHRoaXMua2V5X3ByZXNzKTsKICAgIHRoaXMuYWRkX2xpc3RlbmVyKHdpbmRvdywgInJlc2l6ZSIsIHRoaXMucmVzaXplZCk7CiAgICB0aGlzLmFkZF9saXN0ZW5lcih3aW5kb3csICJzY3JvbGwiLCB0aGlzLnNjcm9sbGVkKTsKICAgIHRoaXMuYWRkX2xpc3RlbmVyKHdpbmRvdywgInVubG9hZCIsIHRoaXMudW5sb2FkZWQpOwoKICAgIHRoaXMuYWRkX2xpc3RlbmVyKGRvY3VtZW50LCAiZ2VzdHVyZWNoYW5nZSIsIGZ1bmN0aW9uICgpCiAgICB7CiAgICAgIHJldHVybiBmYWxzZTsKICAgIH0pOwoKICAgIHRoaXMuYXR0YWNoX3RvdWNoX2hhbmRlcnModGhpcy5zbGlkZXMpOwoKICAgIC8vIHRoaXMgc2VlbXMgdG8gYmUgYSBkZWJ1Z2dpbmcgaGFjawogICAgLy9pZiAoIWRvY3VtZW50LmJvZHkub25jbGljaykKICAgIC8vICBkb2N1bWVudC5ib2R5Lm9uY2xpY2sgPSBmdW5jdGlvbiAoKSB7IH07CgogICAgdGhpcy5zaW5nbGVfc2xpZGVfdmlldygpOwoKICAgIC8vdGhpcy5zZXRfbG9jYXRpb24oKTsKCiAgICB0aGlzLnJlc2l6ZWQoKTsKCiAgICBpZiAodGhpcy5pZTcpCiAgICAgIHNldFRpbWVvdXQodzNjX3NsaWR5LmllX2hhY2ssIDEwMCk7CgogICAgdGhpcy5zaG93X3Rvb2xiYXIoKTsKCiAgICAvLyBmb3IgYmFjayBidXR0b24gZGV0ZWN0aW9uCiAgICBzZXRJbnRlcnZhbChmdW5jdGlvbiAoKSB7IHczY19zbGlkeS5jaGVja19sb2NhdGlvbigpOyB9LCAyMDApOwogICAgdzNjX3NsaWR5LmluaXRpYWxpemVkID0gdHJ1ZTsKICB9LAoKICAvLyBjcmVhdGUgZGl2IGVsZW1lbnQgd2l0aCBsaW5rcyB0byBlYWNoIHNsaWRlCiAgdGFibGVfb2ZfY29udGVudHM6IGZ1bmN0aW9uICgpIHsKICAgIHZhciB0b2MgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJkaXYiKTsKICAgIHRoaXMuYWRkX2NsYXNzKHRvYywgInNsaWR5X3RvYyBoaWRkZW4iKTsKICAgIC8vdG9jLnNldEF0dHJpYnV0ZSgidGFiaW5kZXgiLCAiMCIpOwoKICAgIHZhciBoZWFkaW5nID0gdGhpcy5jcmVhdGVfZWxlbWVudCgiZGl2Iik7CiAgICB0aGlzLmFkZF9jbGFzcyhoZWFkaW5nLCAidG9jLWhlYWRpbmciKTsKICAgIGhlYWRpbmcuaW5uZXJIVE1MID0gdGhpcy5sb2NhbGl6ZSgiVGFibGUgb2YgQ29udGVudHMiKTsKCiAgICB0b2MuYXBwZW5kQ2hpbGQoaGVhZGluZyk7CiAgICB2YXIgcHJldmlvdXMgPSBudWxsOwoKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgdGhpcy5zbGlkZXMubGVuZ3RoOyArK2kpCiAgICB7CiAgICAgIHZhciB0aXRsZSA9IHRoaXMuaGFzX2NsYXNzKHRoaXMuc2xpZGVzW2ldLCAidGl0bGUiKTsKICAgICAgdmFyIG51bSA9IGRvY3VtZW50LmNyZWF0ZVRleHROb2RlKChpICsgMSkgKyAiLiAiKTsKCiAgICAgIHRvYy5hcHBlbmRDaGlsZChudW0pOwoKICAgICAgdmFyIGEgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJhIik7CiAgICAgIGEuc2V0QXR0cmlidXRlKCJocmVmIiwgIiMoIiArIChpKzEpICsgIikiKTsKCiAgICAgIGlmICh0aXRsZSkKICAgICAgICB0aGlzLmFkZF9jbGFzcyhhLCAidGl0bGVzbGlkZSIpOwoKICAgICAgdmFyIG5hbWUgPSBkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZSh0aGlzLnNsaWRlX25hbWUoaSkpOwogICAgICBhLmFwcGVuZENoaWxkKG5hbWUpOwogICAgICBhLm9uY2xpY2sgPSB3M2Nfc2xpZHkudG9jX2NsaWNrOwogICAgICBhLm9ua2V5ZG93biA9IHczY19zbGlkeS50b2Nfa2V5X2Rvd247CiAgICAgIGEucHJldmlvdXMgPSBwcmV2aW91czsKCiAgICAgIGlmIChwcmV2aW91cykKICAgICAgICBwcmV2aW91cy5uZXh0ID0gYTsKCiAgICAgIHRvYy5hcHBlbmRDaGlsZChhKTsKCiAgICAgIGlmIChpID09IDApCiAgICAgICAgdG9jLmZpcnN0ID0gYTsKCiAgICAgIGlmIChpIDwgdGhpcy5zbGlkZXMubGVuZ3RoIC0gMSkKICAgICAgewogICAgICAgIHZhciBiciA9IHRoaXMuY3JlYXRlX2VsZW1lbnQoImJyIik7CiAgICAgICAgdG9jLmFwcGVuZENoaWxkKGJyKTsKICAgICAgfQoKICAgICAgcHJldmlvdXMgPSBhOwogICAgfQoKICAgIHRvYy5mb2N1cyA9IGZ1bmN0aW9uICgpIHsKICAgICAgaWYgKHRoaXMuZmlyc3QpCiAgICAgICAgdGhpcy5maXJzdC5mb2N1cygpOwogICAgfQoKICAgIHRvYy5vbm1vdXNldXAgPSB3M2Nfc2xpZHkubW91c2VfYnV0dG9uX3VwOwoKICAgIHRvYy5vbmNsaWNrID0gZnVuY3Rpb24gKGUpIHsKICAgICAgZXx8KGU9d2luZG93LmV2ZW50KTsKCiAgICAgIGlmICh3M2Nfc2xpZHkuc2VsZWN0ZWRfdGV4dF9sZW4gPD0gMCkKICAgICAgICAgdzNjX3NsaWR5LmhpZGVfdGFibGVfb2ZfY29udGVudHModHJ1ZSk7CgogICAgICB3M2Nfc2xpZHkuc3RvcF9wcm9wYWdhdGlvbihlKTsKICAgIAogICAgICBpZiAoZS5jYW5jZWwgIT0gdW5kZWZpbmVkKQogICAgICAgIGUuY2FuY2VsID0gdHJ1ZTsKICAgICAgCiAgICAgIGlmIChlLnJldHVyblZhbHVlICE9IHVuZGVmaW5lZCkKICAgICAgICBlLnJldHVyblZhbHVlID0gZmFsc2U7CiAgICAgIAogICAgICByZXR1cm4gZmFsc2U7CiAgICB9OwoKICAgIGRvY3VtZW50LmJvZHkuaW5zZXJ0QmVmb3JlKHRvYywgZG9jdW1lbnQuYm9keS5maXJzdENoaWxkKTsKICAgIHJldHVybiB0b2M7CiAgfSwKCiAgaXNfc2hvd25fdG9jOiBmdW5jdGlvbiAoKSB7CiAgICByZXR1cm4gIXczY19zbGlkeS5oYXNfY2xhc3ModzNjX3NsaWR5LnRvYywgImhpZGRlbiIpOwogIH0sCgogIHNob3dfdGFibGVfb2ZfY29udGVudHM6IGZ1bmN0aW9uICgpIHsKICAgIHczY19zbGlkeS5yZW1vdmVfY2xhc3ModzNjX3NsaWR5LnRvYywgImhpZGRlbiIpOwogICAgdmFyIHRvYyA9IHczY19zbGlkeS50b2M7CiAgICB0b2MuZm9jdXMoKTsKCiAgICBpZiAodzNjX3NsaWR5LmllNyAmJiB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyID09IDApCiAgICAgIHNldFRpbWVvdXQodzNjX3NsaWR5LmllX2hhY2ssIDEwMCk7CiAgfSwKCiAgaGlkZV90YWJsZV9vZl9jb250ZW50czogZnVuY3Rpb24gKGZvY3VzKSB7CiAgICB3M2Nfc2xpZHkuYWRkX2NsYXNzKHczY19zbGlkeS50b2MsICJoaWRkZW4iKTsKCiAgICBpZiAoZm9jdXMgJiYgIXczY19zbGlkeS5vcGVyYSAmJgogICAgICAgICF3M2Nfc2xpZHkuaGFzX2NsYXNzKHczY19zbGlkeS50b2MsICJoaWRkZW4iKSkKICAgICAgdzNjX3NsaWR5LnNldF9mb2N1cygpOwogIH0sCgogIHRvZ2dsZV90YWJsZV9vZl9jb250ZW50czogZnVuY3Rpb24gKCkgewogICAgaWYgKHczY19zbGlkeS5pc19zaG93bl90b2MoKSkKICAgICAgdzNjX3NsaWR5LmhpZGVfdGFibGVfb2ZfY29udGVudHModHJ1ZSk7CiAgICBlbHNlCiAgICAgIHczY19zbGlkeS5zaG93X3RhYmxlX29mX2NvbnRlbnRzKCk7CiAgfSwKCiAgLy8gY2FsbGVkIG9uIGNsaWNraW5nIHRvYyBlbnRyeQogIHRvY19jbGljazogZnVuY3Rpb24gKGUpIHsKICAgIGlmICghZSkKICAgICAgZSA9IHdpbmRvdy5ldmVudDsKCiAgICB2YXIgdGFyZ2V0ID0gdzNjX3NsaWR5LmdldF90YXJnZXQoZSk7CgogICAgaWYgKHRhcmdldCAmJiB0YXJnZXQubm9kZVR5cGUgPT0gMSkKICAgIHsKICAgICAgdmFyIHVyaSA9IHRhcmdldC5nZXRBdHRyaWJ1dGUoImhyZWYiKTsKCiAgICAgIGlmICh1cmkpCiAgICAgIHsKICAgICAgICAvL2FsZXJ0KCJnb2luZyB0byAiICsgdXJpKTsKICAgICAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgICAgIHczY19zbGlkeS5oaWRlX3NsaWRlKHNsaWRlKTsKICAgICAgICB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyID0gdzNjX3NsaWR5LmZpbmRfc2xpZGVfbnVtYmVyKHVyaSk7CiAgICAgICAgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgICAgIHczY19zbGlkeS5sYXN0X3Nob3duID0gbnVsbDsKICAgICAgICB3M2Nfc2xpZHkuc2V0X2xvY2F0aW9uKCk7CiAgICAgICAgdzNjX3NsaWR5LnNldF92aXNpYmlsaXR5X2FsbF9pbmNyZW1lbnRhbCgiaGlkZGVuIik7CiAgICAgICAgdzNjX3NsaWR5LnNldF9lb3Nfc3RhdHVzKCF3M2Nfc2xpZHkubmV4dF9pbmNyZW1lbnRhbF9pdGVtKHczY19zbGlkeS5sYXN0X3Nob3duKSk7CiAgICAgICAgdzNjX3NsaWR5LnNob3dfc2xpZGUoc2xpZGUpOwogICAgICAgIC8vdGFyZ2V0LmZvY3VzKCk7CgogICAgICAgIHRyeQogICAgICAgIHsKICAgICAgICAgIGlmICghdzNjX3NsaWR5Lm9wZXJhKQogICAgICAgICAgICB3M2Nfc2xpZHkuc2V0X2ZvY3VzKCk7CiAgICAgICAgfQogICAgICAgIGNhdGNoIChlKQogICAgICAgIHsKICAgICAgICB9CiAgICAgIH0KICAgIH0KCiAgICB3M2Nfc2xpZHkuaGlkZV90YWJsZV9vZl9jb250ZW50cyh0cnVlKTsKICAgIGlmICh3M2Nfc2xpZHkuaWU3KSB3M2Nfc2xpZHkuaWVfaGFjaygpOwogICAgdzNjX3NsaWR5LnN0b3BfcHJvcGFnYXRpb24oZSk7CiAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChlKTsKICB9LAoKICAvLyBjYWxsZWQgb25rZXlkb3duIGZvciB0b2MgZW50cnkKICB0b2Nfa2V5X2Rvd246IGZ1bmN0aW9uIChldmVudCkgewogICAgdmFyIGtleTsKCiAgICBpZiAoIWV2ZW50KQogICAgICB2YXIgZXZlbnQgPSB3aW5kb3cuZXZlbnQ7CgogICAgLy8ga2x1ZGdlIGFyb3VuZCBOUy9JRSBkaWZmZXJlbmNlcyAKICAgIGlmICh3aW5kb3cuZXZlbnQpCiAgICAgIGtleSA9IHdpbmRvdy5ldmVudC5rZXlDb2RlOwogICAgZWxzZSBpZiAoZXZlbnQud2hpY2gpCiAgICAgIGtleSA9IGV2ZW50LndoaWNoOwogICAgZWxzZQogICAgICByZXR1cm4gdHJ1ZTsgLy8gWWlrZXMhIHVua25vd24gYnJvd3NlcgoKICAgIC8vIGlnbm9yZSBldmVudCBpZiBrZXkgdmFsdWUgaXMgemVybwogICAgLy8gYXMgZm9yIGFsdCBvbiBPcGVyYSBhbmQgS29ucXVlcm9yCiAgICBpZiAoIWtleSkKICAgICAgcmV0dXJuIHRydWU7CgogICAgLy8gY2hlY2sgZm9yIGNvbmN1cnJlbnQgY29udHJvbC9jb21tYW5kL2FsdCBrZXkKICAgIC8vIGJ1dCBhcmUgdGhlc2Ugb25seSBwcmVzZW50IG9uIG1vdXNlIGV2ZW50cz8KCiAgICBpZiAoZXZlbnQuY3RybEtleSB8fCBldmVudC5hbHRLZXkpCiAgICAgIHJldHVybiB0cnVlOwoKICAgIGlmIChrZXkgPT0gMTMpCiAgICB7CiAgICAgIHZhciB1cmkgPSB0aGlzLmdldEF0dHJpYnV0ZSgiaHJlZiIpOwoKICAgICAgaWYgKHVyaSkKICAgICAgewogICAgICAgIC8vYWxlcnQoImdvaW5nIHRvICIgKyB1cmkpOwogICAgICAgdmFyIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICB3M2Nfc2xpZHkuaGlkZV9zbGlkZShzbGlkZSk7CiAgICAgICAgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9IHczY19zbGlkeS5maW5kX3NsaWRlX251bWJlcih1cmkpOwogICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICB3M2Nfc2xpZHkubGFzdF9zaG93biA9IG51bGw7CiAgICAgICAgdzNjX3NsaWR5LnNldF9sb2NhdGlvbigpOwogICAgICAgIHczY19zbGlkeS5zZXRfdmlzaWJpbGl0eV9hbGxfaW5jcmVtZW50YWwoImhpZGRlbiIpOwogICAgICAgIHczY19zbGlkeS5zZXRfZW9zX3N0YXR1cyghdzNjX3NsaWR5Lm5leHRfaW5jcmVtZW50YWxfaXRlbSh3M2Nfc2xpZHkubGFzdF9zaG93bikpOwogICAgICAgIHczY19zbGlkeS5zaG93X3NsaWRlKHNsaWRlKTsKICAgICAgICAvL3RhcmdldC5mb2N1cygpOwoKICAgICAgICB0cnkKICAgICAgICB7CiAgICAgICAgICBpZiAoIXczY19zbGlkeS5vcGVyYSkKICAgICAgICAgICAgdzNjX3NsaWR5LnNldF9mb2N1cygpOwogICAgICAgIH0KICAgICAgICBjYXRjaCAoZSkKICAgICAgICB7CiAgICAgICAgfQogICAgICB9CgogICAgICB3M2Nfc2xpZHkuaGlkZV90YWJsZV9vZl9jb250ZW50cyh0cnVlKTsKCiAgICAgIGlmIChzZWxmLmllNykKICAgICAgIHczY19zbGlkeS5pZV9oYWNrKCk7CgogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CgogICAgaWYgKGtleSA9PSA0MCAmJiB0aGlzLm5leHQpCiAgICB7CiAgICAgIHRoaXMubmV4dC5mb2N1cygpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CgogICAgaWYgKGtleSA9PSAzOCAmJiB0aGlzLnByZXZpb3VzKQogICAgewogICAgICB0aGlzLnByZXZpb3VzLmZvY3VzKCk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KCiAgICByZXR1cm4gdHJ1ZTsKICB9LAoKICB0b3VjaHN0YXJ0OiBmdW5jdGlvbiAoZSkKICB7CiAgICAvLyBhIGRvdWJsZSB0b3VjaCBvZnRlbiBzdGFydHMgd2l0aCBhCiAgICAvLyBzaW5nbGUgdG91Y2ggZHVlIHRvIGZpbmdlcnMgdG91Y2hpbmcKICAgIC8vIGRvd24gYXQgc2xpZ2h0bHkgZGlmZmVyZW50IHRpbWVzCiAgICAvLyB0aHVzIGF2b2lkIGNhbGxpbmcgcHJldmVudERlZmF1bHQgaGVyZQogICAgdGhpcy5wcmV2X3RhcCA9IHRoaXMubGFzdF90YXA7CiAgICB0aGlzLmxhc3RfdGFwID0gKG5ldyBEYXRlKS5nZXRUaW1lKCk7CgogICAgdmFyIHRhcF9kZWxheSA9IHRoaXMubGFzdF90YXAgLSB0aGlzLnByZXZfdGFwOwoKICAgIGlmICh0YXBfZGVsYXkgPD0gMjAwKQogICAgewogICAgICAvLyBkb3VibGUgdGFwCiAgICB9CgogICAgdmFyIHRvdWNoID0gZS50b3VjaGVzWzBdOwoKICAgIHRoaXMucGFnZVggPSB0b3VjaC5wYWdlWDsKICAgIHRoaXMucGFnZVkgPSB0b3VjaC5wYWdlWTsKICAgIHRoaXMuc2NyZWVuWCA9IHRvdWNoLnNjcmVlblg7CiAgICB0aGlzLnNjcmVlblkgPSB0b3VjaC5zY3JlZW5ZOwogICAgdGhpcy5jbGllbnRYID0gdG91Y2guY2xpZW50WDsKICAgIHRoaXMuY2xpZW50WSA9IHRvdWNoLmNsaWVudFk7CgogICAgdGhpcy5kZWx0YV94ID0gdGhpcy5kZWx0YV95ID0gMDsKICB9LAoKICB0b3VjaG1vdmU6IGZ1bmN0aW9uIChlKQogIHsKICAgIC8vIG92ZXJyaWRlIG5hdGl2ZSBnZXN0dXJlcyBmb3Igc2luZ2xlIHRvdWNoCiAgICBpZiAoZS50b3VjaGVzLmxlbmd0aCA+IDEpCiAgICAgIHJldHVybjsKCiAgICBlLnByZXZlbnREZWZhdWx0KCk7CiAgICB2YXIgdG91Y2ggPSBlLnRvdWNoZXNbMF07CiAgICB0aGlzLmRlbHRhX3ggPSB0b3VjaC5wYWdlWCAtIHRoaXMucGFnZVg7CiAgICB0aGlzLmRlbHRhX3kgPSB0b3VjaC5wYWdlWSAtIHRoaXMucGFnZVk7CiAgfSwKCiAgdG91Y2hlbmQ6IGZ1bmN0aW9uIChlKQogIHsKICAgIC8vIGRlZmF1bHQgYmVoYXZpb3IgZm9yIG11bHRpLXRvdWNoCiAgICBpZiAoZS50b3VjaGVzLmxlbmd0aCA+IDEpCiAgICAgIHJldHVybjsKCiAgICB2YXIgZGVsYXkgPSAobmV3IERhdGUpLmdldFRpbWUoKSAtIHRoaXMubGFzdF90YXA7CiAgICB2YXIgZHggPSB0aGlzLmRlbHRhX3g7CiAgICB2YXIgZHkgPSB0aGlzLmRlbHRhX3k7CiAgICB2YXIgYWJzX2R4ID0gTWF0aC5hYnMoZHgpOwogICAgdmFyIGFic19keSA9IE1hdGguYWJzKGR5KTsKCiAgICBpZiAoZGVsYXkgPCA1MDAgJiYgKGFic19keCA+IDEwMCB8fCBhYnNfZHkgPiAxMDApKQogICAgewogICAgICBpZiAoYWJzX2R4ID4gMC41ICogYWJzX2R5KQogICAgICB7CiAgICAgICAgZS5wcmV2ZW50RGVmYXVsdCgpOwoKICAgICAgICBpZiAoZHggPCAwKQogICAgICAgICAgdzNjX3NsaWR5Lm5leHRfc2xpZGUodHJ1ZSk7CiAgICAgICAgZWxzZQogICAgICAgICAgdzNjX3NsaWR5LnByZXZpb3VzX3NsaWRlKHRydWUpOwogICAgICB9CiAgICAgIGVsc2UgaWYgKGFic19keSA+IDIgKiBhYnNfZHgpCiAgICAgIHsKICAgICAgICBlLnByZXZlbnREZWZhdWx0KCk7CiAgICAgICAgdzNjX3NsaWR5LnRvZ2dsZV90YWJsZV9vZl9jb250ZW50cygpOwogICAgICB9CiAgICB9CiAgfSwKCiAgLy8gIyMjIE9CU09MRVRFICMjIwogIGJlZm9yZV9wcmludDogZnVuY3Rpb24gKCkgewogICAgdGhpcy5zaG93X2FsbF9zbGlkZXMoKTsKICAgIHRoaXMuaGlkZV90b29sYmFyKCk7CiAgICBhbGVydCgiYmVmb3JlIHByaW50Iik7CiAgfSwKCiAgLy8gIyMjIE9CU09MRVRFICMjIwogIGFmdGVyX3ByaW50OiBmdW5jdGlvbiAoKSB7CiAgICBpZiAoIXRoaXMudmlld19hbGwpCiAgICB7CiAgICAgIHRoaXMuc2luZ2xlX3NsaWRlX3ZpZXcoKTsKICAgICAgdGhpcy5zaG93X3Rvb2xiYXIoKTsKICAgIH0KICAgIGFsZXJ0KCJhZnRlciBwcmludCIpOwogIH0sCgogIC8vICMjIyBPQlNPTEVURSAjIyMKICBwcmludF9zbGlkZXM6IGZ1bmN0aW9uICgpIHsKICAgIHRoaXMuYmVmb3JlX3ByaW50KCk7CiAgICB3aW5kb3cucHJpbnQoKTsKICAgIHRoaXMuYWZ0ZXJfcHJpbnQoKTsKICB9LAoKICAvLyAjIyMgT0JTT0xFVEUgPz8gIyMjCiAgdG9nZ2xlX3ZpZXc6IGZ1bmN0aW9uICgpIHsKICAgIGlmICh0aGlzLnZpZXdfYWxsKQogICAgewogICAgICB0aGlzLnNpbmdsZV9zbGlkZV92aWV3KCk7CiAgICAgIHRoaXMuc2hvd190b29sYmFyKCk7CiAgICAgIHRoaXMudmlld19hbGwgPSAwOwogICAgfQogICAgZWxzZQogICAgewogICAgICB0aGlzLnNob3dfYWxsX3NsaWRlcygpOwogICAgICB0aGlzLmhpZGVfdG9vbGJhcigpOwogICAgICB0aGlzLnZpZXdfYWxsID0gMTsKICAgIH0KICB9LAoKICAvLyBwcmVwYXJlIGZvciBwcmludGluZyAgIyMjIE9CU09MRVRFICMjIwogIHNob3dfYWxsX3NsaWRlczogZnVuY3Rpb24gKCkgewogICAgdGhpcy5yZW1vdmVfY2xhc3MoZG9jdW1lbnQuYm9keSwgInNpbmdsZV9zbGlkZSIpOwogICAgdGhpcy5zZXRfdmlzaWJpbGl0eV9hbGxfaW5jcmVtZW50YWwoInZpc2libGUiKTsKICB9LAoKICAvLyByZXN0b3JlIGFmdGVyIHByaW50aW5nICAjIyMgT0JTT0xFVEUgIyMjCiAgc2luZ2xlX3NsaWRlX3ZpZXc6IGZ1bmN0aW9uICgpIHsKICAgIHRoaXMuYWRkX2NsYXNzKGRvY3VtZW50LmJvZHksICJzaW5nbGVfc2xpZGUiKTsKICAgIHRoaXMuc2V0X3Zpc2liaWxpdHlfYWxsX2luY3JlbWVudGFsKCJ2aXNpYmxlIik7CiAgICB0aGlzLmxhc3Rfc2hvd24gPSB0aGlzLnByZXZpb3VzX2luY3JlbWVudGFsX2l0ZW0obnVsbCk7CiAgfSwKCiAgLy8gc3VwcHJlc3MgSUUncyBpbWFnZSB0b29sYmFyIHBvcCB1cAogIGhpZGVfaW1hZ2VfdG9vbGJhcjogZnVuY3Rpb24gKCkgewogICAgaWYgKCF0aGlzLm5zX3BvcykKICAgIHsKICAgICAgdmFyIGltYWdlcyA9IGRvY3VtZW50LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJJTUciKTsKCiAgICAgIGZvciAodmFyIGkgPSAwOyBpIDwgaW1hZ2VzLmxlbmd0aDsgKytpKQogICAgICAgIGltYWdlc1tpXS5zZXRBdHRyaWJ1dGUoImdhbGxlcnlpbWciLCAibm8iKTsKICAgIH0KICB9LAoKICB1bmxvYWRlZDogZnVuY3Rpb24gKGUpIHsKICAgIC8vYWxlcnQoInVubG9hZGVkIik7CiAgfSwKCiAgLy8gU2FmYXJpIGFuZCBLb25xdWVyb3IgZG9uJ3QgeWV0IHN1cHBvcnQgZ2V0Q29tcHV0ZWRTdHlsZSgpCiAgLy8gYW5kIHRoZXkgYWx3YXlzIHJlbG9hZCBwYWdlIHdoZW4gbG9jYXRpb24uaHJlZiBpcyB1cGRhdGVkCiAgaXNfS0hUTUw6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBhZ2VudCA9IG5hdmlnYXRvci51c2VyQWdlbnQ7CiAgICByZXR1cm4gKGFnZW50LmluZGV4T2YoIktIVE1MIikgPj0gMCA/IHRydWUgOiBmYWxzZSk7CiAgfSwKCiAgLy8gZmluZCBzbGlkZSBuYW1lIGZyb20gZmlyc3QgaDEgZWxlbWVudAogIC8vIGRlZmF1bHQgdG8gZG9jdW1lbnQgdGl0bGUgKyBzbGlkZSBudW1iZXIKICBzbGlkZV9uYW1lOiBmdW5jdGlvbiAoaW5kZXgpIHsKICAgIHZhciBuYW1lID0gbnVsbDsKICAgIHZhciBzbGlkZSA9IHRoaXMuc2xpZGVzW2luZGV4XTsKCiAgICB2YXIgaGVhZGluZyA9IHRoaXMuZmluZF9oZWFkaW5nKHNsaWRlKTsKCiAgICBpZiAoaGVhZGluZykKICAgICAgbmFtZSA9IHRoaXMuZXh0cmFjdF90ZXh0KGhlYWRpbmcpOwoKICAgIGlmICghbmFtZSkKICAgICAgbmFtZSA9IHRoaXMudGl0bGUgKyAiKCIgKyAoaW5kZXggKyAxKSArICIpIjsKCiAgICBuYW1lLnJlcGxhY2UoL1wmL2csICImYW1wOyIpOwogICAgbmFtZS5yZXBsYWNlKC9cPC9nLCAiJmx0OyIpOwogICAgbmFtZS5yZXBsYWNlKC9cPi9nLCAiJmd0OyIpOwoKICAgIHJldHVybiBuYW1lOwogIH0sCgogIC8vIGZpbmQgZmlyc3QgaDEgZWxlbWVudCBpbiBET00gdHJlZQogIGZpbmRfaGVhZGluZzogZnVuY3Rpb24gKG5vZGUpIHsKICAgIGlmICghbm9kZSB8fCBub2RlLm5vZGVUeXBlICE9IDEpCiAgICAgIHJldHVybiBudWxsOwoKICAgIGlmIChub2RlLm5vZGVOYW1lID09ICJIMSIgfHwgbm9kZS5ub2RlTmFtZSA9PSAiaDEiKQogICAgICByZXR1cm4gbm9kZTsKCiAgICB2YXIgY2hpbGQgPSBub2RlLmZpcnN0Q2hpbGQ7CgogICAgd2hpbGUgKGNoaWxkKQogICAgewogICAgICBub2RlID0gdGhpcy5maW5kX2hlYWRpbmcoY2hpbGQpOwoKICAgICAgaWYgKG5vZGUpCiAgICAgICAgcmV0dXJuIG5vZGU7CgogICAgICBjaGlsZCA9IGNoaWxkLm5leHRTaWJsaW5nOwogICAgfQoKICAgIHJldHVybiBudWxsOwogIH0sCgogIC8vIHJlY3Vyc2l2ZWx5IGV4dHJhY3QgdGV4dCBmcm9tIERPTSB0cmVlCiAgZXh0cmFjdF90ZXh0OiBmdW5jdGlvbiAobm9kZSkgewogICAgaWYgKCFub2RlKQogICAgICByZXR1cm4gIiI7CgogICAgLy8gdGV4dCBub2RlcwogICAgaWYgKG5vZGUubm9kZVR5cGUgPT0gMykKICAgICAgcmV0dXJuIG5vZGUubm9kZVZhbHVlOwoKICAgIC8vIGVsZW1lbnRzCiAgICBpZiAobm9kZS5ub2RlVHlwZSA9PSAxKQogICAgewogICAgICBub2RlID0gbm9kZS5maXJzdENoaWxkOwogICAgICB2YXIgdGV4dCA9ICIiOwoKICAgICAgd2hpbGUgKG5vZGUpCiAgICAgIHsKICAgICAgICB0ZXh0ID0gdGV4dCArIHRoaXMuZXh0cmFjdF90ZXh0KG5vZGUpOwogICAgICAgIG5vZGUgPSBub2RlLm5leHRTaWJsaW5nOwogICAgICB9CgogICAgICByZXR1cm4gdGV4dDsKICAgIH0KCiAgICByZXR1cm4gIiI7CiAgfSwKCiAgLy8gZmluZCBjb3B5cmlnaHQgdGV4dCBmcm9tIG1ldGEgZWxlbWVudAogIGZpbmRfY29weXJpZ2h0OiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgbmFtZSwgY29udGVudDsKICAgIHZhciBtZXRhID0gZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoIm1ldGEiKTsKCiAgICBmb3IgKHZhciBpID0gMDsgaSA8IG1ldGEubGVuZ3RoOyArK2kpCiAgICB7CiAgICAgIG5hbWUgPSBtZXRhW2ldLmdldEF0dHJpYnV0ZSgibmFtZSIpOwogICAgICBjb250ZW50ID0gbWV0YVtpXS5nZXRBdHRyaWJ1dGUoImNvbnRlbnQiKTsKCiAgICAgIGlmIChuYW1lID09ICJjb3B5cmlnaHQiKQogICAgICAgIHJldHVybiBjb250ZW50OwogICAgfQoKICAgIHJldHVybiBudWxsOwogIH0sCgogIGZpbmRfc2l6ZV9hZGp1c3Q6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBuYW1lLCBjb250ZW50LCBvZmZzZXQ7CiAgICB2YXIgbWV0YSA9IGRvY3VtZW50LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJtZXRhIik7CgogICAgZm9yICh2YXIgaSA9IDA7IGkgPCBtZXRhLmxlbmd0aDsgKytpKQogICAgewogICAgICBuYW1lID0gbWV0YVtpXS5nZXRBdHRyaWJ1dGUoIm5hbWUiKTsKICAgICAgY29udGVudCA9IG1ldGFbaV0uZ2V0QXR0cmlidXRlKCJjb250ZW50Iik7CgogICAgICBpZiAobmFtZSA9PSAiZm9udC1zaXplLWFkanVzdG1lbnQiKQogICAgICAgIHJldHVybiAxICogY29udGVudDsKICAgIH0KCiAgICByZXR1cm4gMTsKICB9LAoKICAvLyA8bWV0YSBuYW1lPSJkdXJhdGlvbiIgY29udGVudD0iMjAiIC8+ICBmb3IgMjAgbWludXRlcwogIGZpbmRfZHVyYXRpb246IGZ1bmN0aW9uICgpIHsKICAgIHZhciBuYW1lLCBjb250ZW50LCBvZmZzZXQ7CiAgICB2YXIgbWV0YSA9IGRvY3VtZW50LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJtZXRhIik7CgogICAgZm9yICh2YXIgaSA9IDA7IGkgPCBtZXRhLmxlbmd0aDsgKytpKQogICAgewogICAgICBuYW1lID0gbWV0YVtpXS5nZXRBdHRyaWJ1dGUoIm5hbWUiKTsKICAgICAgY29udGVudCA9IG1ldGFbaV0uZ2V0QXR0cmlidXRlKCJjb250ZW50Iik7CgogICAgICBpZiAobmFtZSA9PSAiZHVyYXRpb24iKQogICAgICAgIHJldHVybiA2MDAwMCAqIGNvbnRlbnQ7CiAgICB9CgogICAgcmV0dXJuIG51bGw7CiAgfSwKCiAgcmVwbGFjZV9ieV9ub25fYnJlYWtpbmdfc3BhY2U6IGZ1bmN0aW9uIChzdHIpIHsKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgc3RyLmxlbmd0aDsgKytpKQogICAgICBzdHJbaV0gPSAxNjA7CiAgfSwKCiAgLy8gIyMjIENIRUNLIE1FICMjIyBpcyB1c2Ugb2YgImxpIiBva2F5IGZvciB0ZXh0L2h0bWw/CiAgLy8gZm9yIFhIVE1MIGRvIHdlIGFsc28gbmVlZCB0byBzcGVjaWZ5IG5hbWVzcGFjZT8KICBpbml0X291dGxpbmVyOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgaXRlbXMgPSBkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgibGkiKTsKCiAgICBmb3IgKHZhciBpID0gMDsgaSA8IGl0ZW1zLmxlbmd0aDsgKytpKQogICAgewogICAgICB2YXIgdGFyZ2V0ID0gaXRlbXNbaV07CgogICAgICBpZiAoIXRoaXMuaGFzX2NsYXNzKHRhcmdldC5wYXJlbnROb2RlLCAib3V0bGluZSIpKQogICAgICAgIGNvbnRpbnVlOwoKICAgICAgdGFyZ2V0Lm9uY2xpY2sgPSB0aGlzLm91dGxpbmVfY2xpY2s7Ci8qICMjIyBtb3JlIHdvcmsgbmVlZGVkIGZvciBJRTYKICAgICAgaWYgKCF0aGlzLm5zX3BvcykKICAgICAgewogICAgICAgIHRhcmdldC5vbm1vdXNlb3ZlciA9IHRoaXMuaG92ZXJfb3V0bGluZTsKICAgICAgICB0YXJnZXQub25tb3VzZW91dCA9IHRoaXMudW5ob3Zlcl9vdXRsaW5lOwogICAgICB9CiovCiAgICAgIGlmICh0aGlzLmZvbGRhYmxlKHRhcmdldCkpCiAgICAgIHsKICAgICAgICB0YXJnZXQuZm9sZGFibGUgPSB0cnVlOwogICAgICAgIHRhcmdldC5vbmZvY3VzID0gZnVuY3Rpb24gKCkge3czY19zbGlkeS5vdXRsaW5lID0gdGhpczt9OwogICAgICAgIHRhcmdldC5vbmJsdXIgPSBmdW5jdGlvbiAoKSB7dzNjX3NsaWR5Lm91dGxpbmUgPSBudWxsO307CgogICAgICAgIGlmICghdGFyZ2V0LmdldEF0dHJpYnV0ZSgidGFiaW5kZXgiKSkKICAgICAgICAgIHRhcmdldC5zZXRBdHRyaWJ1dGUoInRhYmluZGV4IiwgIjAiKTsKCiAgICAgICAgaWYgKHRoaXMuaGFzX2NsYXNzKHRhcmdldCwgImV4cGFuZCIpKQogICAgICAgICAgdGhpcy51bmZvbGQodGFyZ2V0KTsKICAgICAgICBlbHNlCiAgICAgICAgICB0aGlzLmZvbGQodGFyZ2V0KTsKICAgICAgfQogICAgICBlbHNlCiAgICAgIHsKICAgICAgICB0aGlzLmFkZF9jbGFzcyh0YXJnZXQsICJub2ZvbGQiKTsKICAgICAgICB0YXJnZXQudmlzaWJsZSA9IHRydWU7CiAgICAgICAgdGFyZ2V0LmZvbGRhYmxlID0gZmFsc2U7CiAgICAgIH0KICAgIH0KICB9LAoKICBmb2xkYWJsZTogZnVuY3Rpb24gKGl0ZW0pIHsKICAgIGlmICghaXRlbSB8fCBpdGVtLm5vZGVUeXBlICE9IDEpCiAgICAgIHJldHVybiBmYWxzZTsKCiAgICB2YXIgbm9kZSA9IGl0ZW0uZmlyc3RDaGlsZDsKCiAgICB3aGlsZSAobm9kZSkKICAgIHsKICAgICAgaWYgKG5vZGUubm9kZVR5cGUgPT0gMSAmJiB0aGlzLmlzX2Jsb2NrKG5vZGUpKQogICAgICAgIHJldHVybiB0cnVlOwoKICAgICAgbm9kZSA9IG5vZGUubmV4dFNpYmxpbmc7CiAgICB9CgogICAgcmV0dXJuIGZhbHNlOwogIH0sCgogIC8vICMjIyBDSEVDSyBNRSAjIyMgc3dpdGNoIHRvIGFkZC9yZW1vdmUgImhpZGRlbiIgY2xhc3MKICBmb2xkOiBmdW5jdGlvbiAoaXRlbSkgewogICAgaWYgKGl0ZW0pCiAgICB7CiAgICAgIHRoaXMucmVtb3ZlX2NsYXNzKGl0ZW0sICJ1bmZvbGRlZCIpOwogICAgICB0aGlzLmFkZF9jbGFzcyhpdGVtLCAiZm9sZGVkIik7CiAgICB9CgogICAgdmFyIG5vZGUgPSBpdGVtID8gaXRlbS5maXJzdENoaWxkIDogbnVsbDsKCiAgICB3aGlsZSAobm9kZSkKICAgIHsKICAgICAgaWYgKG5vZGUubm9kZVR5cGUgPT0gMSAmJiB0aGlzLmlzX2Jsb2NrKG5vZGUpKSAvLyBlbGVtZW50CiAgICAgIHsKICAgICAgICAgdzNjX3NsaWR5LmFkZF9jbGFzcyhub2RlLCAiaGlkZGVuIik7CiAgICAgIH0KCiAgICAgIG5vZGUgPSBub2RlLm5leHRTaWJsaW5nOwogICAgfQoKICAgIGl0ZW0udmlzaWJsZSA9IGZhbHNlOwogIH0sCgogIC8vICMjIyBDSEVDSyBNRSAjIyMgc3dpdGNoIHRvIGFkZC9yZW1vdmUgImhpZGRlbiIgY2xhc3MKICB1bmZvbGQ6IGZ1bmN0aW9uIChpdGVtKSB7CiAgICBpZiAoaXRlbSkKICAgIHsKICAgICAgdGhpcy5hZGRfY2xhc3MoaXRlbSwgInVuZm9sZGVkIik7CiAgICAgIHRoaXMucmVtb3ZlX2NsYXNzKGl0ZW0sICJmb2xkZWQiKTsKICAgIH0KCiAgICB2YXIgbm9kZSA9IGl0ZW0gPyBpdGVtLmZpcnN0Q2hpbGQgOiBudWxsOwoKICAgIHdoaWxlIChub2RlKQogICAgewogICAgICBpZiAobm9kZS5ub2RlVHlwZSA9PSAxICYmIHRoaXMuaXNfYmxvY2sobm9kZSkpIC8vIGVsZW1lbnQKICAgICAgewogICAgICAgIHczY19zbGlkeS5yZW1vdmVfY2xhc3Mobm9kZSwgImhpZGRlbiIpOwogICAgICB9CgogICAgICBub2RlID0gbm9kZS5uZXh0U2libGluZzsKICAgIH0KCiAgICBpdGVtLnZpc2libGUgPSB0cnVlOwogIH0sCgogIG91dGxpbmVfY2xpY2s6IGZ1bmN0aW9uIChlKSB7CiAgICBpZiAoIWUpCiAgICAgIGUgPSB3aW5kb3cuZXZlbnQ7CgogICAgdmFyIHJpZ2h0Y2xpY2sgPSBmYWxzZTsKICAgIHZhciB0YXJnZXQgPSB3M2Nfc2xpZHkuZ2V0X3RhcmdldChlKTsKCiAgICB3aGlsZSAodGFyZ2V0ICYmIHRhcmdldC52aXNpYmxlID09IHVuZGVmaW5lZCkKICAgICAgdGFyZ2V0ID0gdGFyZ2V0LnBhcmVudE5vZGU7CgogICAgaWYgKCF0YXJnZXQpCiAgICAgIHJldHVybiB0cnVlOwoKICAgIGlmIChlLndoaWNoKQogICAgICByaWdodGNsaWNrID0gKGUud2hpY2ggPT0gMyk7CiAgICBlbHNlIGlmIChlLmJ1dHRvbikKICAgICAgcmlnaHRjbGljayA9IChlLmJ1dHRvbiA9PSAyKTsKCiAgICBpZiAoIXJpZ2h0Y2xpY2sgJiYgdGFyZ2V0LnZpc2libGUgIT0gdW5kZWZpbmVkKQogICAgewogICAgICBpZiAodGFyZ2V0LmZvbGRhYmxlKQogICAgICB7CiAgICAgICAgaWYgKHRhcmdldC52aXNpYmxlKQogICAgICAgICAgdzNjX3NsaWR5LmZvbGQodGFyZ2V0KTsKICAgICAgICBlbHNlCiAgICAgICAgICB3M2Nfc2xpZHkudW5mb2xkKHRhcmdldCk7CiAgICAgIH0KCiAgICAgIHczY19zbGlkeS5zdG9wX3Byb3BhZ2F0aW9uKGUpOwogICAgICBlLmNhbmNlbCA9IHRydWU7CiAgICAgIGUucmV0dXJuVmFsdWUgPSBmYWxzZTsKICAgIH0KCiAgICByZXR1cm4gZmFsc2U7CiAgfSwKCiAgYWRkX2luaXRpYWxfcHJvbXB0OiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgcHJvbXB0ID0gdGhpcy5jcmVhdGVfZWxlbWVudCgiZGl2Iik7CiAgICBwcm9tcHQuc2V0QXR0cmlidXRlKCJjbGFzcyIsICJpbml0aWFsX3Byb21wdCIpOwoKICAgIHZhciBwMSA9IHRoaXMuY3JlYXRlX2VsZW1lbnQoInAiKTsKICAgIHByb21wdC5hcHBlbmRDaGlsZChwMSk7CiAgICBwMS5zZXRBdHRyaWJ1dGUoImNsYXNzIiwgImhlbHAiKTsKCiAgICBpZiAodGhpcy5rZXlib2FyZGxlc3MpCiAgICAgIHAxLmlubmVySFRNTCA9ICJzd2lwZSBsZWZ0IHRvIG1vdmUgdG8gbmV4dCBzbGlkZSI7CiAgICBlbHNlCiAgICAgIHAxLmlubmVySFRNTCA9ICJTcGFjZSwgUmlnaHQgQXJyb3cgb3Igc3dpcGUgbGVmdCB0byBtb3ZlIHRvICIgKwogICAgICAgICAgICAgICAgICAgICAibmV4dCBzbGlkZSwgY2xpY2sgaGVscCBiZWxvdyBmb3IgbW9yZSBkZXRhaWxzIjsKCiAgICB0aGlzLmFkZF9saXN0ZW5lcihwcm9tcHQsICJjbGljayIsIGZ1bmN0aW9uIChlKSB7CiAgICAgIGRvY3VtZW50LmJvZHkucmVtb3ZlQ2hpbGQocHJvbXB0KTsKICAgICAgdzNjX3NsaWR5LnN0b3BfcHJvcGFnYXRpb24oZSk7CiAgICAKICAgICAgaWYgKGUuY2FuY2VsICE9IHVuZGVmaW5lZCkKICAgICAgICBlLmNhbmNlbCA9IHRydWU7CiAgICAgIAogICAgICBpZiAoZS5yZXR1cm5WYWx1ZSAhPSB1bmRlZmluZWQpCiAgICAgICAgZS5yZXR1cm5WYWx1ZSA9IGZhbHNlOwogICAgICAKICAgICAgcmV0dXJuIGZhbHNlOwogICAgfSk7CgogICAgZG9jdW1lbnQuYm9keS5hcHBlbmRDaGlsZChwcm9tcHQpOwogICAgdGhpcy5pbml0aWFsX3Byb21wdCA9IHByb21wdDsKICAgIHNldFRpbWVvdXQoZnVuY3Rpb24oKSB7ZG9jdW1lbnQuYm9keS5yZW1vdmVDaGlsZChwcm9tcHQpO30sIDUwMDApOwogIH0sCgogIGFkZF90b29sYmFyOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgY291bnRlciwgcGFnZTsKCiAgICAgdGhpcy50b29sYmFyID0gdGhpcy5jcmVhdGVfZWxlbWVudCgiZGl2Iik7CiAgICAgdGhpcy50b29sYmFyLnNldEF0dHJpYnV0ZSgiY2xhc3MiLCAidG9vbGJhciIpOwoKICAgICAvLyBhIHJlYXNvbmFibHkgYmVoYXZlZCBicm93c2VyCiAgICAgaWYgKHRoaXMubnNfcG9zIHx8ICF0aGlzLmllNikKICAgICB7CiAgICAgICB2YXIgcmlnaHQgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJkaXYiKTsKICAgICAgIHJpZ2h0LnNldEF0dHJpYnV0ZSgic3R5bGUiLCAiZmxvYXQ6IHJpZ2h0OyB0ZXh0LWFsaWduOiByaWdodCIpOwoKICAgICAgIGNvdW50ZXIgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJzcGFuIikKICAgICAgIGNvdW50ZXIuaW5uZXJIVE1MID0gdGhpcy5sb2NhbGl6ZSgic2xpZGUiKSArICIgbi9tIjsKICAgICAgIHJpZ2h0LmFwcGVuZENoaWxkKGNvdW50ZXIpOwogICAgICAgdGhpcy50b29sYmFyLmFwcGVuZENoaWxkKHJpZ2h0KTsKCiAgICAgICB2YXIgbGVmdCA9IHRoaXMuY3JlYXRlX2VsZW1lbnQoImRpdiIpOwogICAgICAgbGVmdC5zZXRBdHRyaWJ1dGUoInN0eWxlIiwgInRleHQtYWxpZ246IGxlZnQiKTsKCiAgICAgICAvLyBnbG9iYWwgZW5kIG9mIHNsaWRlIGluZGljYXRvcgogICAgICAgdGhpcy5lb3MgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJzcGFuIik7CiAgICAgICB0aGlzLmVvcy5pbm5lckhUTUwgPSAiKiAiOwogICAgICAgbGVmdC5hcHBlbmRDaGlsZCh0aGlzLmVvcyk7CgogICAgICAgdmFyIGhlbHAgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJhIik7CiAgICAgICBoZWxwLnNldEF0dHJpYnV0ZSgiaHJlZiIsIHRoaXMuaGVscF9wYWdlKTsKICAgICAgIGhlbHAuc2V0QXR0cmlidXRlKCJ0aXRsZSIsIHRoaXMubG9jYWxpemUodGhpcy5oZWxwX3RleHQpKTsKICAgICAgIGhlbHAuaW5uZXJIVE1MID0gdGhpcy5sb2NhbGl6ZSgiaGVscD8iKTsKICAgICAgIGxlZnQuYXBwZW5kQ2hpbGQoaGVscCk7CiAgICAgICBoZWxwLnN0eWxlLmRpc3BsYXk9Im5vbmUiOyAKICAgICAgIHRoaXMuaGVscF9hbmNob3IgPSBoZWxwOyAgLy8gc2F2ZSBmb3IgZm9jdXMgaGFjawoKICAgICAgIHZhciBnYXAxID0gZG9jdW1lbnQuY3JlYXRlVGV4dE5vZGUoIiAiKTsKICAgICAgIGxlZnQuYXBwZW5kQ2hpbGQoZ2FwMSk7CgogICAgICAgdmFyIGNvbnRlbnRzID0gdGhpcy5jcmVhdGVfZWxlbWVudCgiYSIpOwogICAgICAgY29udGVudHMuc2V0QXR0cmlidXRlKCJocmVmIiwgImphdmFzY3JpcHQ6dzNjX3NsaWR5LnRvZ2dsZV90YWJsZV9vZl9jb250ZW50cygpIik7CiAgICAgICBjb250ZW50cy5zZXRBdHRyaWJ1dGUoInRpdGxlIiwgdGhpcy5sb2NhbGl6ZSgidGFibGUgb2YgY29udGVudHMiKSk7CiAgICAgICBjb250ZW50cy5pbm5lckhUTUwgPSB0aGlzLmxvY2FsaXplKCJDb250ZW50cyIpOwogICAgICAgbGVmdC5hcHBlbmRDaGlsZChjb250ZW50cyk7CgogICAgICAgdmFyIGdhcDIgPSBkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZSgiICIpOwogICAgICAgbGVmdC5hcHBlbmRDaGlsZChnYXAyKTsKCiAgICAgICB2YXIgY29weXJpZ2h0ID0gdGhpcy5maW5kX2NvcHlyaWdodCgpOwoKICAgICAgIGlmIChjb3B5cmlnaHQpCiAgICAgICB7CiAgICAgICAgIHZhciBzcGFuID0gdGhpcy5jcmVhdGVfZWxlbWVudCgic3BhbiIpOwogICAgICAgICBzcGFuLmNsYXNzTmFtZSA9ICJjb3B5cmlnaHQiOwogICAgICAgICBzcGFuLmlubmVySFRNTCA9IGNvcHlyaWdodDsKICAgICAgICAgbGVmdC5hcHBlbmRDaGlsZChzcGFuKTsKICAgICAgIH0KCiAgICAgICB0aGlzLnRvb2xiYXIuc2V0QXR0cmlidXRlKCJ0YWJpbmRleCIsICIwIik7CiAgICAgICB0aGlzLnRvb2xiYXIuYXBwZW5kQ2hpbGQobGVmdCk7CiAgICAgfQogICAgIGVsc2UgLy8gSUU2IHNvIG5lZWQgdG8gd29yayBhcm91bmQgaXRzIHBvb3IgQ1NTIHN1cHBvcnQKICAgICB7CiAgICAgICB0aGlzLnRvb2xiYXIuc3R5bGUucG9zaXRpb24gPSAodGhpcy5pZTcgPyAiZml4ZWQiIDogImFic29sdXRlIik7CiAgICAgICB0aGlzLnRvb2xiYXIuc3R5bGUuekluZGV4ID0gIjIwMCI7CiAgICAgICB0aGlzLnRvb2xiYXIuc3R5bGUud2lkdGggPSAiOTkuOSUiOwogICAgICAgdGhpcy50b29sYmFyLnN0eWxlLmhlaWdodCA9ICIxLjJlbSI7CiAgICAgICB0aGlzLnRvb2xiYXIuc3R5bGUudG9wID0gImF1dG8iOwogICAgICAgdGhpcy50b29sYmFyLnN0eWxlLmJvdHRvbSA9ICIwIjsKICAgICAgIHRoaXMudG9vbGJhci5zdHlsZS5sZWZ0ID0gIjAiOwogICAgICAgdGhpcy50b29sYmFyLnN0eWxlLnJpZ2h0ID0gIjAiOwogICAgICAgdGhpcy50b29sYmFyLnN0eWxlLnRleHRBbGlnbiA9ICJsZWZ0IjsKICAgICAgIHRoaXMudG9vbGJhci5zdHlsZS5mb250U2l6ZSA9ICI2MCUiOwogICAgICAgdGhpcy50b29sYmFyLnN0eWxlLmNvbG9yID0gInJlZCI7CiAgICAgICB0aGlzLnRvb2xiYXIuYm9yZGVyV2lkdGggPSAwOwogICAgICAgdGhpcy50b29sYmFyLmNsYXNzTmFtZSA9ICJ0b29sYmFyIjsKICAgICAgIHRoaXMudG9vbGJhci5zdHlsZS5iYWNrZ3JvdW5kID0gInJnYigyNDAsMjQwLDI0MCkiOwoKICAgICAgIC8vIHdvdWxkIGxpa2UgdG8gaGF2ZSBoZWxwIHRleHQgbGVmdCBhbGlnbmVkCiAgICAgICAvLyBhbmQgcGFnZSBjb3VudGVyIHJpZ2h0IGFsaWduZWQsIGZsb2F0aW5nCiAgICAgICAvLyBkaXYncyBkb24ndCB3b3JrLCBzbyBpbnN0ZWFkIHVzZSBuZXN0ZWQKICAgICAgIC8vIGFic29sdXRlbHkgcG9zaXRpb25lZCBkaXYncy4KCiAgICAgICB2YXIgc3AgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJzcGFuIik7CiAgICAgICBzcC5pbm5lckhUTUwgPSAiJm5ic3A7Jm5ic3A7KiZuYnNwOyI7CiAgICAgICB0aGlzLnRvb2xiYXIuYXBwZW5kQ2hpbGQoc3ApOwogICAgICAgdGhpcy5lb3MgPSBzcDsgIC8vIGVuZCBvZiBzbGlkZSBpbmRpY2F0b3IKCiAgICAgICB2YXIgaGVscCA9IHRoaXMuY3JlYXRlX2VsZW1lbnQoImEiKTsKICAgICAgIGhlbHAuc2V0QXR0cmlidXRlKCJocmVmIiwgdGhpcy5oZWxwX3BhZ2UpOwogICAgICAgaGVscC5zZXRBdHRyaWJ1dGUoInRpdGxlIiwgdGhpcy5sb2NhbGl6ZSh0aGlzLmhlbHBfdGV4dCkpOwogICAgICAgaGVscC5pbm5lckhUTUwgPSB0aGlzLmxvY2FsaXplKCJoZWxwPyIpOwogICAgICAgdGhpcy50b29sYmFyLmFwcGVuZENoaWxkKGhlbHApOwogICAgICAgdGhpcy5oZWxwX2FuY2hvciA9IGhlbHA7ICAvLyBzYXZlIGZvciBmb2N1cyBoYWNrCgogICAgICAgdmFyIGdhcDEgPSBkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZSgiICIpOwogICAgICAgdGhpcy50b29sYmFyLmFwcGVuZENoaWxkKGdhcDEpOwoKICAgICAgIHZhciBjb250ZW50cyA9IHRoaXMuY3JlYXRlX2VsZW1lbnQoImEiKTsKICAgICAgIGNvbnRlbnRzLnNldEF0dHJpYnV0ZSgiaHJlZiIsICJqYXZhc2NyaXB0OnRvZ2dsZVRhYmxlT2ZDb250ZW50cygpIik7CiAgICAgICBjb250ZW50cy5zZXRBdHRyaWJ1dGUoInRpdGxlIiwgdGhpcy5sb2NhbGl6ZSgidGFibGUgb2YgY29udGVudHMiLmxvY2FsaXplKSk7CiAgICAgICBjb250ZW50cy5pbm5lckhUTUwgPSB0aGlzLmxvY2FsaXplKCJjb250ZW50cz8iKTsKICAgICAgIHRoaXMudG9vbGJhci5hcHBlbmRDaGlsZChjb250ZW50cyk7CgogICAgICAgdmFyIGdhcDIgPSBkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZSgiICIpOwogICAgICAgdGhpcy50b29sYmFyLmFwcGVuZENoaWxkKGdhcDIpOwoKICAgICAgIHZhciBjb3B5cmlnaHQgPSB0aGlzLmZpbmRfY29weXJpZ2h0KCk7CgogICAgICAgaWYgKGNvcHlyaWdodCkKICAgICAgIHsKICAgICAgICAgdmFyIHNwYW4gPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJzcGFuIik7CiAgICAgICAgIHNwYW4uaW5uZXJIVE1MID0gY29weXJpZ2h0OwogICAgICAgICBzcGFuLnN0eWxlLmNvbG9yID0gImJsYWNrIjsKICAgICAgICAgc3Bhbi5zdHlsZS5tYXJnaW5MZWZ0ID0gIjAuNWVtIjsKICAgICAgICAgdGhpcy50b29sYmFyLmFwcGVuZENoaWxkKHNwYW4pOwogICAgICAgfQoKICAgICAgIGNvdW50ZXIgPSB0aGlzLmNyZWF0ZV9lbGVtZW50KCJkaXYiKQogICAgICAgY291bnRlci5zdHlsZS5wb3NpdGlvbiA9ICJhYnNvbHV0ZSI7CiAgICAgICBjb3VudGVyLnN0eWxlLndpZHRoID0gImF1dG8iOyAvLyIyMCUiOwogICAgICAgY291bnRlci5zdHlsZS5oZWlnaHQgPSAiMS4yZW0iOwogICAgICAgY291bnRlci5zdHlsZS50b3AgPSAiYXV0byI7CiAgICAgICBjb3VudGVyLnN0eWxlLmJvdHRvbSA9IDA7CiAgICAgICBjb3VudGVyLnN0eWxlLnJpZ2h0ID0gIjAiOwogICAgICAgY291bnRlci5zdHlsZS50ZXh0QWxpZ24gPSAicmlnaHQiOwogICAgICAgY291bnRlci5zdHlsZS5jb2xvciA9ICJyZWQiOwogICAgICAgY291bnRlci5zdHlsZS5iYWNrZ3JvdW5kID0gInJnYigyNDAsMjQwLDI0MCkiOwoKICAgICAgIGNvdW50ZXIuaW5uZXJIVE1MID0gdGhpcy5sb2NhbGl6ZSgic2xpZGUiKSArICIgbi9tIjsKICAgICAgIHRoaXMudG9vbGJhci5hcHBlbmRDaGlsZChjb3VudGVyKTsKICAgICB9CgogICAgIC8vIGVuc3VyZSB0aGF0IGNsaWNrIGlzbid0IHBhc3NlZCB0aHJvdWdoIHRvIHRoZSBwYWdlCiAgICAgdGhpcy50b29sYmFyLm9uY2xpY2sgPQogICAgICAgICBmdW5jdGlvbiAoZSkgewogICAgICAgICAgIGlmICghZSkKICAgICAgICAgICAgIGUgPSB3aW5kb3cuZXZlbnQ7CgogICAgICAgICAgIHZhciB0YXJnZXQgPSBlLnRhcmdldDsKCiAgICAgICAgICAgaWYgKCF0YXJnZXQgJiYgZS5zcmNFbGVtZW50KQogICAgICAgICAgICAgdGFyZ2V0ID0gZS5zcmNFbGVtZW50OwoKICAgICAgICAgICAvLyB3b3JrIGFyb3VuZCBTYWZhcmkgYnVnCiAgICAgICAgICAgaWYgKHRhcmdldCAmJiB0YXJnZXQubm9kZVR5cGUgPT0gMykKICAgICAgICAgICAgIHRhcmdldCA9IHRhcmdldC5wYXJlbnROb2RlOwoKICAgICAgICAgICB3M2Nfc2xpZHkuc3RvcF9wcm9wYWdhdGlvbihlKTsKCiAgICAgICAgICAgaWYgKHRhcmdldCAmJiB0YXJnZXQubm9kZU5hbWUudG9Mb3dlckNhc2UoKSAhPSAiYSIpCiAgICAgICAgICAgICB3M2Nfc2xpZHkubW91c2VfYnV0dG9uX2NsaWNrKGUpOwogICAgICAgICB9OwoKICAgICB0aGlzLnNsaWRlX251bWJlcl9lbGVtZW50ID0gY291bnRlcjsKICAgICB0aGlzLnNldF9lb3Nfc3RhdHVzKGZhbHNlKTsKICAgICBkb2N1bWVudC5ib2R5LmFwcGVuZENoaWxkKHRoaXMudG9vbGJhcik7CiAgfSwKCiAgLy8gd3lzaXd5ZyBlZGl0b3JzIG1ha2UgaXQgaGFyZCB0byB1c2UgZGl2IGVsZW1lbnRzCiAgLy8gZS5nLiBhbWF5YSBsb3NlcyB0aGUgZGl2IHdoZW4geW91IGNvcHkgYW5kIHBhc3RlCiAgLy8gdGhpcyBmdW5jdGlvbiB3cmFwcyBkaXYgZWxlbWVudHMgYXJvdW5kIGltcGxpY2l0CiAgLy8gc2xpZGVzIHdoaWNoIHN0YXJ0IHdpdGggYW4gaDEgZWxlbWVudCBhbmQgY29udGludWUKICAvLyB1cCB0byB0aGUgbmV4dCBoZWFkaW5nIG9yIGRpdiBlbGVtZW50CiAgd3JhcF9pbXBsaWNpdF9zbGlkZXM6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBpLCBoZWFkaW5nLCBub2RlLCBuZXh0LCBkaXY7CiAgICB2YXIgaGVhZGluZ3MgPSBkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgiaDEiKTsKCiAgICBpZiAoIWhlYWRpbmdzKQogICAgICByZXR1cm47CgogICAgZm9yIChpID0gMDsgaSA8IGhlYWRpbmdzLmxlbmd0aDsgKytpKQogICAgewogICAgICBoZWFkaW5nID0gaGVhZGluZ3NbaV07CgogICAgICBpZiAoaGVhZGluZy5wYXJlbnROb2RlICE9IGRvY3VtZW50LmJvZHkpCiAgICAgICAgY29udGludWU7CgogICAgICBub2RlID0gaGVhZGluZy5uZXh0U2libGluZzsKCiAgICAgIGRpdiA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpOwogICAgICB0aGlzLmFkZF9jbGFzcyhkaXYsICJzbGlkZSIpOwogICAgICBkb2N1bWVudC5ib2R5LnJlcGxhY2VDaGlsZChkaXYsIGhlYWRpbmcpOwogICAgICBkaXYuYXBwZW5kQ2hpbGQoaGVhZGluZyk7CgogICAgICB3aGlsZSAobm9kZSkKICAgICAgewogICAgICAgIGlmIChub2RlLm5vZGVUeXBlID09IDEpIC8vIGFuIGVsZW1lbnQKICAgICAgICB7CiAgICAgICAgICAgaWYgKG5vZGUubm9kZU5hbWUgPT0gIkgxIiB8fCBub2RlLm5vZGVOYW1lID09ICJoMSIpCiAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgaWYgKG5vZGUubm9kZU5hbWUgPT0gIkRJViIgfHwgbm9kZS5ub2RlTmFtZSA9PSAiZGl2IikKICAgICAgICAgICB7CiAgICAgICAgICAgICBpZiAodGhpcy5oYXNfY2xhc3Mobm9kZSwgInNsaWRlIikpCiAgICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgIGlmICh0aGlzLmhhc19jbGFzcyhub2RlLCAiaGFuZG91dCIpKQogICAgICAgICAgICAgICBicmVhazsKICAgICAgICAgICB9CiAgICAgICAgfQoKICAgICAgICBuZXh0ID0gbm9kZS5uZXh0U2libGluZzsKICAgICAgICBub2RlID0gZG9jdW1lbnQuYm9keS5yZW1vdmVDaGlsZChub2RlKTsKICAgICAgICBkaXYuYXBwZW5kQ2hpbGQobm9kZSk7CiAgICAgICAgbm9kZSA9IG5leHQ7CiAgICAgIH0gCiAgICB9CiAgfSwKCiAgYXR0YWNoX3RvdWNoX2hhbmRlcnM6IGZ1bmN0aW9uKHNsaWRlcykKICB7CiAgICB2YXIgaSwgc2xpZGU7CgogICAgZm9yIChpID0gMDsgaSA8IHNsaWRlcy5sZW5ndGg7ICsraSkKICAgIHsKICAgICAgc2xpZGUgPSBzbGlkZXNbaV07CiAgICAgIHRoaXMuYWRkX2xpc3RlbmVyKHNsaWRlLCAidG91Y2hzdGFydCIsIHRoaXMudG91Y2hzdGFydCk7CiAgICAgIHRoaXMuYWRkX2xpc3RlbmVyKHNsaWRlLCAidG91Y2htb3ZlIiwgdGhpcy50b3VjaG1vdmUpOwogICAgICB0aGlzLmFkZF9saXN0ZW5lcihzbGlkZSwgInRvdWNoZW5kIiwgdGhpcy50b3VjaGVuZCk7CiAgICB9CiAgfSwKCi8vIHJldHVybiBuZXcgYXJyYXkgb2YgYWxsIHNsaWRlcwogIGNvbGxlY3Rfc2xpZGVzOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgc2xpZGVzID0gbmV3IEFycmF5KCk7CiAgICB2YXIgZGl2cyA9IGRvY3VtZW50LmJvZHkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImRpdiIpOwoKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgZGl2cy5sZW5ndGg7ICsraSkKICAgIHsKICAgICAgZGl2ID0gZGl2cy5pdGVtKGkpOwoKICAgICAgaWYgKHRoaXMuaGFzX2NsYXNzKGRpdiwgInNsaWRlIikpCiAgICAgIHsKICAgICAgICAvLyBhZGQgc2xpZGUgdG8gY29sbGVjdGlvbgogICAgICAgIHNsaWRlc1tzbGlkZXMubGVuZ3RoXSA9IGRpdjsKCiAgICAgICAgLy8gaGlkZSBlYWNoIHNsaWRlIGFzIGl0IGlzIGZvdW5kCiAgICAgICAgdGhpcy5hZGRfY2xhc3MoZGl2LCAiaGlkZGVuIik7CgogICAgICAgIC8vIGFkZCBkdW1teSA8YnIvPiBhdCBlbmQgZm9yIHNjcm9sbGluZyBoYWNrCiAgICAgICAgdmFyIG5vZGUxID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYnIiKTsKICAgICAgICBkaXYuYXBwZW5kQ2hpbGQobm9kZTEpOwogICAgICAgIHZhciBub2RlMiA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImJyIik7CiAgICAgICAgZGl2LmFwcGVuZENoaWxkKG5vZGUyKTsKICAgICAgfQogICAgICBlbHNlIGlmICh0aGlzLmhhc19jbGFzcyhkaXYsICJiYWNrZ3JvdW5kIikpCiAgICAgIHsgIC8vIHdvcmsgYXJvdW5kIGZvciBGaXJlZm94IFNWRyByZWxvYWQgYnVnCiAgICAgICAgLy8gd2hpY2ggb3RoZXJ3aXNlIHJlcGxhY2VzIDFzdCBTVkcgZ3JhcGhpYyB3aXRoIDJuZAogICAgICAgIGRpdi5zdHlsZS5kaXNwbGF5ID0gImJsb2NrIjsKICAgICAgfQogICAgfQoKICAgIHRoaXMuc2xpZGVzID0gc2xpZGVzOwogIH0sCgogIC8vIHJldHVybiBuZXcgYXJyYXkgb2YgYWxsIDxkaXYgY2xhc3M9ImhhbmRvdXQiPgogIGNvbGxlY3Rfbm90ZXM6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBub3RlcyA9IG5ldyBBcnJheSgpOwogICAgdmFyIGRpdnMgPSBkb2N1bWVudC5ib2R5LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJkaXYiKTsKCiAgICBmb3IgKHZhciBpID0gMDsgaSA8IGRpdnMubGVuZ3RoOyArK2kpCiAgICB7CiAgICAgIGRpdiA9IGRpdnMuaXRlbShpKTsKCiAgICAgIGlmICh0aGlzLmhhc19jbGFzcyhkaXYsICJoYW5kb3V0IikpCiAgICAgIHsKICAgICAgICAvLyBhZGQgbm90ZSB0byBjb2xsZWN0aW9uCiAgICAgICAgbm90ZXNbbm90ZXMubGVuZ3RoXSA9IGRpdjsKCiAgICAgICAgLy8gYW5kIGhpZGUgaXQKICAgICAgICB0aGlzLmFkZF9jbGFzcyhkaXYsICJoaWRkZW4iKTsKICAgICAgfQogICAgfQoKICAgIHRoaXMubm90ZXMgPSBub3RlczsKICB9LAoKICAvLyByZXR1cm4gbmV3IGFycmF5IG9mIGFsbCA8ZGl2IGNsYXNzPSJiYWNrZ3JvdW5kIj4KICAvLyBpbmNsdWRpbmcgbmFtZWQgYmFja2dyb3VuZHMgZS5nLiBjbGFzcz0iYmFja2dyb3VuZCB0aXRsZXBhZ2UiCiAgY29sbGVjdF9iYWNrZ3JvdW5kczogZnVuY3Rpb24gKCkgewogICAgdmFyIGJhY2tncm91bmRzID0gbmV3IEFycmF5KCk7CiAgICB2YXIgZGl2cyA9IGRvY3VtZW50LmJvZHkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImRpdiIpOwoKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgZGl2cy5sZW5ndGg7ICsraSkKICAgIHsKICAgICAgZGl2ID0gZGl2cy5pdGVtKGkpOwoKICAgICAgaWYgKHRoaXMuaGFzX2NsYXNzKGRpdiwgImJhY2tncm91bmQiKSkKICAgICAgewogICAgICAgIC8vIGFkZCBiYWNrZ3JvdW5kIHRvIGNvbGxlY3Rpb24KICAgICAgICBiYWNrZ3JvdW5kc1tiYWNrZ3JvdW5kcy5sZW5ndGhdID0gZGl2OwoKICAgICAgICAvLyBhbmQgaGlkZSBpdAogICAgICAgIHRoaXMuYWRkX2NsYXNzKGRpdiwgImhpZGRlbiIpOwogICAgICB9CiAgICB9CgogICAgdGhpcy5iYWNrZ3JvdW5kcyA9IGJhY2tncm91bmRzOwogIH0sCgogIC8vIHNldCBjbGljayBoYW5kbGVycyBvbiBhbGwgYW5jaG9ycwogIHBhdGNoX2FuY2hvcnM6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBzZWxmID0gdzNjX3NsaWR5OwogICAgdmFyIGhhbmRsZXIgPSBmdW5jdGlvbiAoZXZlbnQpIHsKICAgICAgLy8gY29tcGFyZSB0aGlzLmhyZWYgd2l0aCBsb2NhdGlvbi5ocmVmCiAgICAgIC8vIGZvciBsaW5rIHRvIGFub3RoZXIgc2xpZGUgaW4gdGhpcyBkb2MKCiAgICAgIGlmIChzZWxmLnBhZ2VfYWRkcmVzcyh0aGlzLmhyZWYpID09IHNlbGYucGFnZV9hZGRyZXNzKGxvY2F0aW9uLmhyZWYpKQogICAgICB7CiAgICAgICAgLy8geWVzLCBzbyBmaW5kIG5ldyBzbGlkZSBudW1iZXIKICAgICAgICB2YXIgbmV3c2xpZGVudW0gPSBzZWxmLmZpbmRfc2xpZGVfbnVtYmVyKHRoaXMuaHJlZik7CgogICAgICAgIGlmIChuZXdzbGlkZW51bSAhPSBzZWxmLnNsaWRlX251bWJlcikKICAgICAgICB7CiAgICAgICAgICB2YXIgc2xpZGUgPSBzZWxmLnNsaWRlc1tzZWxmLnNsaWRlX251bWJlcl07CiAgICAgICAgICBzZWxmLmhpZGVfc2xpZGUoc2xpZGUpOwogICAgICAgICAgc2VsZi5zbGlkZV9udW1iZXIgPSBuZXdzbGlkZW51bTsKICAgICAgICAgIHNsaWRlID0gc2VsZi5zbGlkZXNbc2VsZi5zbGlkZV9udW1iZXJdOwogICAgICAgICAgc2VsZi5zaG93X3NsaWRlKHNsaWRlKTsKICAgICAgICAgIHNlbGYuc2V0X2xvY2F0aW9uKCk7CiAgICAgICAgfQogICAgICB9CiAgICAgIGVsc2UKICAgICAgICB3M2Nfc2xpZHkuc3RvcF9wcm9wYWdhdGlvbihldmVudCk7CgovLyAgICAgIGVsc2UgaWYgKHRoaXMudGFyZ2V0ID09IG51bGwpCi8vICAgICAgICBsb2NhdGlvbi5ocmVmID0gdGhpcy5ocmVmOwoKICAgICAgdGhpcy5ibHVyKCk7CiAgICAgIHNlbGYuZGlzYWJsZV9zbGlkZV9jbGljayA9IHRydWU7CiAgICB9OwoKICAgIHZhciBhbmNob3JzID0gZG9jdW1lbnQuYm9keS5nZXRFbGVtZW50c0J5VGFnTmFtZSgiYSIpOwoKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgYW5jaG9ycy5sZW5ndGg7ICsraSkKICAgIHsKICAgICAgaWYgKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKQogICAgICAgIGFuY2hvcnNbaV0uYWRkRXZlbnRMaXN0ZW5lcigiY2xpY2siLCBoYW5kbGVyLCBmYWxzZSk7CiAgICAgIGVsc2UKICAgICAgICBhbmNob3JzW2ldLmF0dGFjaEV2ZW50KCJvbmNsaWNrIiwgaGFuZGxlcik7CiAgICB9CiAgfSwKCiAgLy8gIyMjIENIRUNLIE1FICMjIyBzZWUgd2hpY2ggZnVuY3Rpb25zIGFyZSBpbnZva2VkIHZpYSBzZXRUaW1lb3V0CiAgLy8gZWl0aGVyIGRpcmVjdGx5IG9yIGluZGlyZWN0bHkgZm9yIHVzZSBvZiB3M2Nfc2xpZHkgdnMgdGhpcwogIHNob3dfc2xpZGVfbnVtYmVyOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgdGltZXIgPSB3M2Nfc2xpZHkuZ2V0X3RpbWVyKCk7CiAgICB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyX2VsZW1lbnQuaW5uZXJIVE1MID0gdGltZXIgKyB3M2Nfc2xpZHkubG9jYWxpemUoInNsaWRlIikgKyAiICIgKwogICAgICAgICAgICh3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyICsgMSkgKyAiLyIgKyB3M2Nfc2xpZHkuc2xpZGVzLmxlbmd0aDsKICB9LAoKICAvLyBldmVyeSAyMDBtUyBjaGVjayBpZiB0aGUgbG9jYXRpb24gaGFzIGJlZW4gY2hhbmdlZCBhcyBhCiAgLy8gcmVzdWx0IG9mIHRoZSB1c2VyIGFjdGl2YXRpbmcgdGhlIEJhY2sgYnV0dG9uL21lbnUgaXRlbQogIC8vIGRvZXNuJ3Qgd29yayBmb3IgT3BlcmEgPCA5LjUKICBjaGVja19sb2NhdGlvbjogZnVuY3Rpb24gKCkgewogICAgdmFyIGhhc2ggPSBsb2NhdGlvbi5oYXNoOwoKICAgIGlmICh3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyID4gMCAmJiAoaGFzaCA9PSAiIiB8fCBoYXNoID09ICIjIikpCiAgICAgIHczY19zbGlkeS5nb3RvX3NsaWRlKDApOwogICAgZWxzZSBpZiAoaGFzaC5sZW5ndGggPiAyICYmIGhhc2ggIT0gIiMoIisodzNjX3NsaWR5LnNsaWRlX251bWJlcisxKSsiKSIpCiAgICB7CiAgICAgIHZhciBudW0gPSBwYXJzZUludChsb2NhdGlvbi5oYXNoLnN1YnN0cigyKSk7CgogICAgICBpZiAoIWlzTmFOKG51bSkpCiAgICAgICAgdzNjX3NsaWR5LmdvdG9fc2xpZGUobnVtLTEpOwogICAgfQoKICAgIGlmICh3M2Nfc2xpZHkudGltZV9sZWZ0ICYmIHczY19zbGlkeS5zbGlkZV9udW1iZXIgPiAwKQogICAgewogICAgICB3M2Nfc2xpZHkuc2hvd19zbGlkZV9udW1iZXIoKTsKCiAgICAgIGlmICh3M2Nfc2xpZHkudGltZV9sZWZ0ID4gMCkKICAgICAgICB3M2Nfc2xpZHkudGltZV9sZWZ0IC09IDIwMDsKICAgIH0gCiAgfSwKCiAgZ2V0X3RpbWVyOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgdGltZXIgPSAiIjsKICAgIGlmICh3M2Nfc2xpZHkudGltZV9sZWZ0KQogICAgewogICAgICB2YXIgbWlucywgc2VjczsKICAgICAgc2VjcyA9IE1hdGguZmxvb3IodzNjX3NsaWR5LnRpbWVfbGVmdC8xMDAwKTsKICAgICAgbWlucyA9IE1hdGguZmxvb3Ioc2VjcyAvIDYwKTsKICAgICAgc2VjcyA9IHNlY3MgJSA2MDsKICAgICAgdGltZXIgPSAobWlucyA/IG1pbnMrIm0iIDogIiIpICsgc2VjcyArICJzICI7CiAgICB9CgogICAgcmV0dXJuIHRpbWVyOwogIH0sCgogIC8vIHRoaXMgZG9lc24ndCBwdXNoIGxvY2F0aW9uIG9udG8gaGlzdG9yeSBzdGFjayBmb3IgSUUKICAvLyBmb3Igd2hpY2ggYSBoaWRkZW4gaWZyYW1lIGhhY2sgaXMgbmVlZGVkOiBsb2FkIHBhZ2UgaW50bwogIC8vIHRoZSBpZnJhbWUgd2l0aCBzY3JpcHQgdGhhdCBzZXQncyBwYXJlbnQncyBsb2NhdGlvbi5oYXNoCiAgLy8gYnV0IHRoYXQgd29uJ3Qgd29yayBmb3Igc3RhbmRhbG9uZSB1c2UgdW5sZXNzIHdlIGNhbgogIC8vIGNyZWF0ZSB0aGUgcGFnZSBkeW5hbWljYWxseSB2aWEgYSBqYXZhc2NyaXB0OiBVUkwKICAvLyAjIyMgdXNlIGhpc3RvcnkucHVzaFN0YXRlIGlmIGF2YWlsYWJsZQogIHNldF9sb2NhdGlvbjogZnVuY3Rpb24gKCkgewogICAgIHZhciB1cmkgPSB3M2Nfc2xpZHkucGFnZV9hZGRyZXNzKGxvY2F0aW9uLmhyZWYpOwogICAgIHZhciBoYXNoID0gIiMoIiArICh3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyKzEpICsgIikiOwoKICAgICBpZiAodzNjX3NsaWR5LnNsaWRlX251bWJlciA+PSAwKQogICAgICAgdXJpID0gdXJpICsgaGFzaDsKCiAgICAgaWYgKHR5cGVvZihoaXN0b3J5LnB1c2hTdGF0ZSkgIT0gInVuZGVmaW5lZCIgJiYgbG9jYXRpb24ucHJvdG9jb2wgIT09ICJmaWxlOiIpCiAgICAgewogICAgICAgZG9jdW1lbnQudGl0bGUgPSB3M2Nfc2xpZHkudGl0bGUgKyAiICgiICsgKHczY19zbGlkeS5zbGlkZV9udW1iZXIrMSkgKyAiKSI7CiAgICAgICBoaXN0b3J5LnB1c2hTdGF0ZSgwLCBkb2N1bWVudC50aXRsZSwgaGFzaCk7CiAgICAgICB3M2Nfc2xpZHkuc2hvd19zbGlkZV9udW1iZXIoKTsKICAgICAgIHczY19zbGlkeS5ub3RpZnlfb2JzZXJ2ZXJzKCk7CiAgICAgICByZXR1cm47CiAgICAgfQoKICAgICBpZiAodzNjX3NsaWR5LmllICYmICh3M2Nfc2xpZHkuaWU2IHx8IHczY19zbGlkeS5pZTcpKQogICAgICAgdzNjX3NsaWR5LnB1c2hfaGFzaChoYXNoKTsKCiAgICAgaWYgKHVyaSAhPSBsb2NhdGlvbi5ocmVmKSAvLyAmJiAha2h0bWwKICAgICAgICBsb2NhdGlvbi5ocmVmID0gdXJpOwoKICAgICBpZiAodGhpcy5raHRtbCkKICAgICAgICBoYXNoID0gIigiICsgKHczY19zbGlkeS5zbGlkZV9udW1iZXIrMSkgKyAiKSI7CgogICAgIGlmICghdGhpcy5pZSAmJiBsb2NhdGlvbi5oYXNoICE9IGhhc2ggJiYgbG9jYXRpb24uaGFzaCAhPSAiIikKICAgICAgIGxvY2F0aW9uLmhhc2ggPSBoYXNoOwoKICAgICBkb2N1bWVudC50aXRsZSA9IHczY19zbGlkeS50aXRsZSArICIgKCIgKyAodzNjX3NsaWR5LnNsaWRlX251bWJlcisxKSArICIpIjsKICAgICB3M2Nfc2xpZHkuc2hvd19zbGlkZV9udW1iZXIoKTsKICAgICB3M2Nfc2xpZHkubm90aWZ5X29ic2VydmVycygpOwogIH0sCgogIG5vdGlmeV9vYnNlcnZlcnM6IGZ1bmN0aW9uICgpCiAgewogICAgdmFyIHNsaWRlID0gdGhpcy5zbGlkZXNbdGhpcy5zbGlkZV9udW1iZXJdOwoKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgdGhpcy5vYnNlcnZlcnMubGVuZ3RoOyArK2kpCiAgICAgIHRoaXMub2JzZXJ2ZXJzW2ldKHRoaXMuc2xpZGVfbnVtYmVyKzEsIHRoaXMuZmluZF9oZWFkaW5nKHNsaWRlKS5pbm5lclRleHQsIGxvY2F0aW9uLmhyZWYpOwogIH0sCgogIGFkZF9vYnNlcnZlcjogZnVuY3Rpb24gKG9ic2VydmVyKQogIHsKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgdGhpcy5vYnNlcnZlcnMubGVuZ3RoOyArK2kpCiAgICB7CiAgICAgIGlmIChvYnNlcnZlciA9PSB0aGlzLm9ic2VydmVyc1tpXSkKICAgICAgICByZXR1cm47CiAgICB9CgogICAgdGhpcy5vYnNlcnZlcnMucHVzaChvYnNlcnZlcik7CiAgfSwKCiAgcmVtb3ZlX29ic2VydmVyOiBmdW5jdGlvbiAobykKICB7CiAgICBmb3IgKHZhciBpID0gMDsgaSA8IHRoaXMub2JzZXJ2ZXJzLmxlbmd0aDsgKytpKQogICAgewogICAgICBpZiAob2JzZXJ2ZXIgPT0gdGhpcy5vYnNlcnZlcnNbaV0pCiAgICAgIHsKICAgICAgICB0aGlzLm9ic2VydmVycy5zcGxpY2UoaSwxKTsKICAgICAgICBicmVhazsKICAgICAgfQogICAgfQogIH0sCgogIHBhZ2VfYWRkcmVzczogZnVuY3Rpb24gKHVyaSkgewogICAgdmFyIGkgPSB1cmkuaW5kZXhPZigiIyIpOwoKICAgIGlmIChpIDwgMCkKICAgICAgaSA9IHVyaS5pbmRleE9mKCIlMjMiKTsKCiAgICAvLyBjaGVjayBpZiBhbmNob3IgaXMgZW50aXJlIHBhZ2UKCiAgICBpZiAoaSA8IDApCiAgICAgIHJldHVybiB1cmk7ICAvLyB5ZXMKCiAgICByZXR1cm4gdXJpLnN1YnN0cigwLCBpKTsKICB9LAoKICAvLyBvbmx5IHVzZWQgZm9yIElFNiBhbmQgSUU3CiAgb25fZnJhbWVfbG9hZGVkOiBmdW5jdGlvbiAoaGFzaCkgewogICAgbG9jYXRpb24uaGFzaCA9IGhhc2g7CiAgICB2YXIgdXJpID0gdzNjX3NsaWR5LnBhZ2VfYWRkcmVzcyhsb2NhdGlvbi5ocmVmKTsKICAgIGxvY2F0aW9uLmhyZWYgPSB1cmkgKyBoYXNoOwogIH0sCgogIC8vIGhpc3RvcnkgaGFjayB3aXRoIHRoYW5rcyB0byBCZXJ0cmFuZCBMZSBSb3kKICBwdXNoX2hhc2g6IGZ1bmN0aW9uIChoYXNoKSB7CiAgICBpZiAoaGFzaCA9PSAiIikgaGFzaCA9ICIjKDEpIjsKICAgICAgd2luZG93LmxvY2F0aW9uLmhhc2ggPSBoYXNoOwoKICAgIHZhciBkb2MgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgiaGlzdG9yeUZyYW1lIikuY29udGVudFdpbmRvdy5kb2N1bWVudDsKICAgIGRvYy5vcGVuKCJqYXZhc2NyaXB0Oic8aHRtbD48L2h0bWw+JyIpOwogICAgZG9jLndyaXRlKCI8aHRtbD48aGVhZD48c2NyaXB0IHR5cGU9XCJ0ZXh0L2phdmFzY3JpcHRcIj53aW5kb3cucGFyZW50LnczY19zbGlkeS5vbl9mcmFtZV9sb2FkZWQoJyIrCiAgICAgIChoYXNoKSArICInKTs8L3NjcmlwdD48L2hlYWQ+PGJvZHk+aGVsbG8gbXVtPC9ib2R5PjwvaHRtbD4iKTsKICAgICAgZG9jLmNsb3NlKCk7CiAgfSwKCiAgLy8gZmluZCBjdXJyZW50IHNsaWRlIGJhc2VkIHVwb24gbG9jYXRpb24KICAvLyBmaXJzdCBmaW5kIHRhcmdldCBhbmNob3IgYW5kIHRoZW4gbG9vawogIC8vIGZvciBhc3NvY2lhdGVkIGRpdiBlbGVtZW50IGVuY2xvc2luZyBpdAogIC8vIGZpbmFsbHkgbWFwIHRoYXQgdG8gc2xpZGUgbnVtYmVyCiAgZmluZF9zbGlkZV9udW1iZXI6IGZ1bmN0aW9uICh1cmkpIHsKICAgIC8vIGZpcnN0IGdldCBhbmNob3IgZnJvbSBwYWdlIGxvY2F0aW9uCgogICAgdmFyIGkgPSB1cmkuaW5kZXhPZigiIyIpOwoKICAgIC8vIGNoZWNrIGlmIGFuY2hvciBpcyBlbnRpcmUgcGFnZQogICAgaWYgKGkgPCAwKQogICAgICByZXR1cm4gMDsgIC8vIHllcwoKICAgIHZhciBhbmNob3IgPSB1bmVzY2FwZSh1cmkuc3Vic3RyKGkrMSkpOwoKICAgIC8vIG5vdyB1c2UgYW5jaG9yIGFzIFhNTCBJRCB0byBmaW5kIHRhcmdldAogICAgdmFyIHRhcmdldCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGFuY2hvcik7CgogICAgaWYgKCF0YXJnZXQpCiAgICB7CiAgICAgIC8vIGRvZXMgYW5jaG9yIGxvb2sgbGlrZSAiKDIpIiBmb3Igc2xpZGUgMiA/PwogICAgICAvLyB3aGVyZSBmaXJzdCBzbGlkZSBpcyAoMSkKICAgICAgdmFyIHJlID0gL1woKFxkKStcKS87CgogICAgICBpZiAoYW5jaG9yLm1hdGNoKHJlKSkKICAgICAgewogICAgICAgIHZhciBudW0gPSBwYXJzZUludChhbmNob3Iuc3Vic3RyaW5nKDEsIGFuY2hvci5sZW5ndGgtMSkpOwoKICAgICAgICBpZiAobnVtID4gdGhpcy5zbGlkZXMubGVuZ3RoKQogICAgICAgICAgbnVtID0gMTsKCiAgICAgICAgaWYgKC0tbnVtIDwgMCkKICAgICAgICAgIG51bSA9IDA7CgogICAgICAgIHJldHVybiBudW07CiAgICAgIH0KCiAgICAgIC8vIGFjY2VwdCBbMl0gZm9yIGJhY2t3YXJkcyBjb21wYXRpYmlsaXR5CiAgICAgIHJlID0gL1xbKFxkKStcXS87CgogICAgICBpZiAoYW5jaG9yLm1hdGNoKHJlKSkKICAgICAgewogICAgICAgICB2YXIgbnVtID0gcGFyc2VJbnQoYW5jaG9yLnN1YnN0cmluZygxLCBhbmNob3IubGVuZ3RoLTEpKTsKCiAgICAgICAgIGlmIChudW0gPiB0aGlzLnNsaWRlcy5sZW5ndGgpCiAgICAgICAgICAgIG51bSA9IDE7CgogICAgICAgICBpZiAoLS1udW0gPCAwKQogICAgICAgICAgICBudW0gPSAwOwoKICAgICAgICAgcmV0dXJuIG51bTsKICAgICAgfQoKICAgICAgLy8gb2ggZGVhciB1bmtub3duIGFuY2hvcgogICAgICByZXR1cm4gMDsKICAgIH0KCiAgICAvLyBzZWFyY2ggZm9yIGVuY2xvc2luZyBzbGlkZQoKICAgIHdoaWxlICh0cnVlKQogICAgewogICAgICAvLyBicm93c2VyIGNvZXJjZXMgaHRtbCBlbGVtZW50cyB0byB1cHBlcmNhc2UhCiAgICAgIGlmICh0YXJnZXQubm9kZU5hbWUudG9Mb3dlckNhc2UoKSA9PSAiZGl2IiAmJgogICAgICAgICAgICB0aGlzLmhhc19jbGFzcyh0YXJnZXQsICJzbGlkZSIpKQogICAgICB7CiAgICAgICAgLy8gZm91bmQgdGhlIHNsaWRlIGVsZW1lbnQKICAgICAgICBicmVhazsKICAgICAgfQoKICAgICAgLy8gb3RoZXJ3aXNlIHRyeSBwYXJlbnQgZWxlbWVudCBpZiBhbnkKCiAgICAgIHRhcmdldCA9IHRhcmdldC5wYXJlbnROb2RlOwoKICAgICAgaWYgKCF0YXJnZXQpCiAgICAgIHsKICAgICAgICByZXR1cm4gMDsgICAvLyBubyBsdWNrIQogICAgICB9CiAgICB9OwoKICAgIGZvciAoaSA9IDA7IGkgPCBzbGlkZXMubGVuZ3RoOyArK2kpCiAgICB7CiAgICAgIGlmIChzbGlkZXNbaV0gPT0gdGFyZ2V0KQogICAgICAgIHJldHVybiBpOyAgLy8gc3VjY2VzcwogICAgfQoKICAgIC8vIG9oIGRlYXIgc3RpbGwgbm8gbHVjawogICAgcmV0dXJuIDA7CiAgfSwKCiAgcHJldmlvdXNfc2xpZGU6IGZ1bmN0aW9uIChpbmNyZW1lbnRhbCkgewogICAgaWYgKCF3M2Nfc2xpZHkudmlld19hbGwpCiAgICB7CiAgICAgIHZhciBzbGlkZTsKCiAgICAgIGlmICgoaW5jcmVtZW50YWwgfHwgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9PSAwKSAmJiB3M2Nfc2xpZHkubGFzdF9zaG93biAhPSBudWxsKQogICAgICB7CiAgICAgICAgdzNjX3NsaWR5Lmxhc3Rfc2hvd24gPSB3M2Nfc2xpZHkuaGlkZV9wcmV2aW91c19pdGVtKHczY19zbGlkeS5sYXN0X3Nob3duKTsKICAgICAgICB3M2Nfc2xpZHkuc2V0X2Vvc19zdGF0dXMoZmFsc2UpOwogICAgICB9CiAgICAgIGVsc2UgaWYgKHczY19zbGlkeS5zbGlkZV9udW1iZXIgPiAwKQogICAgICB7CiAgICAgICAgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgICAgIHczY19zbGlkeS5oaWRlX3NsaWRlKHNsaWRlKTsKCiAgICAgICAgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9IHczY19zbGlkeS5zbGlkZV9udW1iZXIgLSAxOwogICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICB3M2Nfc2xpZHkuc2V0X3Zpc2liaWxpdHlfYWxsX2luY3JlbWVudGFsKCJ2aXNpYmxlIik7CiAgICAgICAgdzNjX3NsaWR5Lmxhc3Rfc2hvd24gPSB3M2Nfc2xpZHkucHJldmlvdXNfaW5jcmVtZW50YWxfaXRlbShudWxsKTsKICAgICAgICB3M2Nfc2xpZHkuc2V0X2Vvc19zdGF0dXModHJ1ZSk7CiAgICAgICAgdzNjX3NsaWR5LnNob3dfc2xpZGUoc2xpZGUpOwogICAgICB9CgogICAgICB3M2Nfc2xpZHkuc2V0X2xvY2F0aW9uKCk7CgogICAgICBpZiAoIXczY19zbGlkeS5uc19wb3MpCiAgICAgICAgdzNjX3NsaWR5LnJlZnJlc2hfdG9vbGJhcigyMDApOwogICAgfQogIH0sCgogIG5leHRfc2xpZGU6IGZ1bmN0aW9uIChpbmNyZW1lbnRhbCkgewogICAgaWYgKCF3M2Nfc2xpZHkudmlld19hbGwpCiAgICB7CiAgICAgIHZhciBzbGlkZSwgbGFzdCA9IHczY19zbGlkeS5sYXN0X3Nob3duOwoKICAgICAgaWYgKGluY3JlbWVudGFsIHx8IHczY19zbGlkeS5zbGlkZV9udW1iZXIgPT0gdzNjX3NsaWR5LnNsaWRlcy5sZW5ndGggLSAxKQogICAgICAgICB3M2Nfc2xpZHkubGFzdF9zaG93biA9IHczY19zbGlkeS5yZXZlYWxfbmV4dF9pdGVtKHczY19zbGlkeS5sYXN0X3Nob3duKTsKCiAgICAgIGlmICgoIWluY3JlbWVudGFsIHx8IHczY19zbGlkeS5sYXN0X3Nob3duID09IG51bGwpICYmCiAgICAgICAgICAgICB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyIDwgdzNjX3NsaWR5LnNsaWRlcy5sZW5ndGggLSAxKQogICAgICB7CiAgICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwoKICAgICAgICAgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9IHczY19zbGlkeS5zbGlkZV9udW1iZXIgKyAxOwogICAgICAgICBzbGlkZSA9IHczY19zbGlkeS5zbGlkZXNbdzNjX3NsaWR5LnNsaWRlX251bWJlcl07CiAgICAgICAgIHczY19zbGlkeS5sYXN0X3Nob3duID0gbnVsbDsKICAgICAgICAgdzNjX3NsaWR5LnNldF92aXNpYmlsaXR5X2FsbF9pbmNyZW1lbnRhbCgiaGlkZGVuIik7CiAgICAgICAgIHczY19zbGlkeS5zaG93X3NsaWRlKHNsaWRlKTsKICAgICAgfQogICAgICBlbHNlIGlmICghdzNjX3NsaWR5Lmxhc3Rfc2hvd24pCiAgICAgIHsKICAgICAgICAgaWYgKGxhc3QgJiYgaW5jcmVtZW50YWwpCiAgICAgICAgICAgdzNjX3NsaWR5Lmxhc3Rfc2hvd24gPSBsYXN0OwogICAgICB9CgogICAgICB3M2Nfc2xpZHkuc2V0X2xvY2F0aW9uKCk7CgogICAgICB3M2Nfc2xpZHkuc2V0X2Vvc19zdGF0dXMoIXczY19zbGlkeS5uZXh0X2luY3JlbWVudGFsX2l0ZW0odzNjX3NsaWR5Lmxhc3Rfc2hvd24pKTsKCiAgICAgIGlmICghdzNjX3NsaWR5Lm5zX3BvcykKICAgICAgICAgdzNjX3NsaWR5LnJlZnJlc2hfdG9vbGJhcigyMDApOwogICAgIH0KICB9LAoKICAvLyB0byBmaXJzdCBzbGlkZSB3aXRoIG5vdGhpbmcgcmV2ZWFsZWQKICAvLyBpLmUuIHN0YXRlIGF0IHN0YXJ0IG9mIHByZXNlbnRhdGlvbgogIGZpcnN0X3NsaWRlOiBmdW5jdGlvbiAoKSB7CiAgICAgaWYgKCF3M2Nfc2xpZHkudmlld19hbGwpCiAgICAgewogICAgICAgdmFyIHNsaWRlOwoKICAgICAgIGlmICh3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyICE9IDApCiAgICAgICB7CiAgICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwoKICAgICAgICAgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9IDA7CiAgICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICAgdzNjX3NsaWR5Lmxhc3Rfc2hvd24gPSBudWxsOwogICAgICAgICB3M2Nfc2xpZHkuc2V0X3Zpc2liaWxpdHlfYWxsX2luY3JlbWVudGFsKCJoaWRkZW4iKTsKICAgICAgICAgdzNjX3NsaWR5LnNob3dfc2xpZGUoc2xpZGUpOwogICAgICAgfQoKICAgICAgIHczY19zbGlkeS5zZXRfZW9zX3N0YXR1cygKICAgICAgICAgIXczY19zbGlkeS5uZXh0X2luY3JlbWVudGFsX2l0ZW0odzNjX3NsaWR5Lmxhc3Rfc2hvd24pKTsKICAgICAgIHczY19zbGlkeS5zZXRfbG9jYXRpb24oKTsKICAgICB9CiAgfSwKCiAgLy8gZ290byBsYXN0IHNsaWRlIHdpdGggZXZlcnl0aGluZyByZXZlYWxlZAogIC8vIGkuZS4gc3RhdGUgYXQgZW5kIG9mIHByZXNlbnRhdGlvbgogIGxhc3Rfc2xpZGU6IGZ1bmN0aW9uICgpIHsKICAgIGlmICghdzNjX3NsaWR5LnZpZXdfYWxsKQogICAgewogICAgICB2YXIgc2xpZGU7CgogICAgICB3M2Nfc2xpZHkubGFzdF9zaG93biA9IG51bGw7IC8vcmV2ZWFsTmV4dEl0ZW0obGFzdFNob3duKTsKCiAgICAgIGlmICh3M2Nfc2xpZHkubGFzdF9zaG93biA9PSBudWxsICYmCiAgICAgICAgICB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyIDwgdzNjX3NsaWR5LnNsaWRlcy5sZW5ndGggLSAxKQogICAgICB7CiAgICAgICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgICAgICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwogICAgICAgICB3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyID0gdzNjX3NsaWR5LnNsaWRlcy5sZW5ndGggLSAxOwogICAgICAgICBzbGlkZSA9IHczY19zbGlkeS5zbGlkZXNbdzNjX3NsaWR5LnNsaWRlX251bWJlcl07CiAgICAgICAgIHczY19zbGlkeS5zZXRfdmlzaWJpbGl0eV9hbGxfaW5jcmVtZW50YWwoInZpc2libGUiKTsKICAgICAgICAgdzNjX3NsaWR5Lmxhc3Rfc2hvd24gPSB3M2Nfc2xpZHkucHJldmlvdXNfaW5jcmVtZW50YWxfaXRlbShudWxsKTsKCiAgICAgICAgIHczY19zbGlkeS5zaG93X3NsaWRlKHNsaWRlKTsKICAgICAgfQogICAgICBlbHNlCiAgICAgIHsKICAgICAgICAgdzNjX3NsaWR5LnNldF92aXNpYmlsaXR5X2FsbF9pbmNyZW1lbnRhbCgidmlzaWJsZSIpOwogICAgICAgICB3M2Nfc2xpZHkubGFzdF9zaG93biA9IHczY19zbGlkeS5wcmV2aW91c19pbmNyZW1lbnRhbF9pdGVtKG51bGwpOwogICAgICB9CgogICAgICB3M2Nfc2xpZHkuc2V0X2Vvc19zdGF0dXModHJ1ZSk7CiAgICAgIHczY19zbGlkeS5zZXRfbG9jYXRpb24oKTsKICAgIH0KICB9LAoKCiAgLy8gIyMjIGNoZWNrIHRoaXMgYW5kIGNvbnNpZGVyIGFkZC9yZW1vdmUgY2xhc3MKICBzZXRfZW9zX3N0YXR1czogZnVuY3Rpb24gKHN0YXRlKSB7CiAgICBpZiAodGhpcy5lb3MpCiAgICAgIHRoaXMuZW9zLnN0eWxlLmNvbG9yID0gKHN0YXRlID8gInJnYigyNDAsMjQwLDI0MCkiIDogInJlZCIpOwogIH0sCgogIC8vIGZpcnN0IHNsaWRlIGlzIDAKICBnb3RvX3NsaWRlOiBmdW5jdGlvbiAobnVtKSB7CiAgICAvL2FsZXJ0KCJnb2luZyB0byBzbGlkZSAiICsgKG51bSsxKSk7CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwogICAgdzNjX3NsaWR5LnNsaWRlX251bWJlciA9IG51bTsKICAgIHNsaWRlID0gdzNjX3NsaWR5LnNsaWRlc1t3M2Nfc2xpZHkuc2xpZGVfbnVtYmVyXTsKICAgIHczY19zbGlkeS5sYXN0X3Nob3duID0gbnVsbDsKICAgIHczY19zbGlkeS5zZXRfdmlzaWJpbGl0eV9hbGxfaW5jcmVtZW50YWwoImhpZGRlbiIpOwogICAgdzNjX3NsaWR5LnNldF9lb3Nfc3RhdHVzKCF3M2Nfc2xpZHkubmV4dF9pbmNyZW1lbnRhbF9pdGVtKHczY19zbGlkeS5sYXN0X3Nob3duKSk7CiAgICBkb2N1bWVudC50aXRsZSA9IHczY19zbGlkeS50aXRsZSArICIgKCIgKyAodzNjX3NsaWR5LnNsaWRlX251bWJlcisxKSArICIpIjsKICAgIHczY19zbGlkeS5zaG93X3NsaWRlKHNsaWRlKTsKICAgIHczY19zbGlkeS5zaG93X3NsaWRlX251bWJlcigpOwogIH0sCgoKICBzaG93X3NsaWRlOiBmdW5jdGlvbiAoc2xpZGUpIHsKICAgIHRoaXMuc3luY19iYWNrZ3JvdW5kKHNsaWRlKTsKICAgIHRoaXMucmVtb3ZlX2NsYXNzKHNsaWRlLCAiaGlkZGVuIik7CgogICAgLy8gd29yayBhcm91bmQgSUU5IG9iamVjdCByZW5kZXJpbmcgYnVnCiAgICBzZXRUaW1lb3V0KCJ3aW5kb3cuc2Nyb2xsVG8oMCwwKTsiLCAxKTsKICB9LAoKICBoaWRlX3NsaWRlOiBmdW5jdGlvbiAoc2xpZGUpIHsKICAgIHRoaXMuYWRkX2NsYXNzKHNsaWRlLCAiaGlkZGVuIik7CiAgfSwKCiAgc2V0X2ZvY3VzOiBmdW5jdGlvbiAoZWxlbWVudCkKICB7CiAgICBpZiAoZWxlbWVudCkKICAgICAgZWxlbWVudC5mb2N1cygpOwogICAgZWxzZQogICAgewogICAgICB3M2Nfc2xpZHkuaGVscF9hbmNob3IuZm9jdXMoKTsKCiAgICAgIHNldFRpbWVvdXQoZnVuY3Rpb24oKSB7CiAgICAgICAgdzNjX3NsaWR5LmhlbHBfYW5jaG9yLmJsdXIoKTsKICAgICAgfSwgMSk7CiAgICB9CiAgfSwKCiAgLy8gc2hvdyBqdXN0IHRoZSBiYWNrZ3JvdW5kcyBwZXJ0aW5lbnQgdG8gdGhpcyBzbGlkZQogIC8vIHdoZW4gc2xpZGUgYmFja2dyb3VuZC1jb2xvciBpcyB0cmFuc3BhcmVudAogIC8vIHRoaXMgc2hvdWxkIG5vdyB3b3JrIHdpdGggcmdiYSBjb2xvciB2YWx1ZXMKICBzeW5jX2JhY2tncm91bmQ6IGZ1bmN0aW9uIChzbGlkZSkgewogICAgdmFyIGJhY2tncm91bmQ7CiAgICB2YXIgYmdDb2xvcjsKCiAgICBpZiAoc2xpZGUuY3VycmVudFN0eWxlKQogICAgICBiZ0NvbG9yID0gc2xpZGUuY3VycmVudFN0eWxlWyJiYWNrZ3JvdW5kQ29sb3IiXTsKICAgIGVsc2UgaWYgKGRvY3VtZW50LmRlZmF1bHRWaWV3KQogICAgewogICAgICB2YXIgc3R5bGVzID0gZG9jdW1lbnQuZGVmYXVsdFZpZXcuZ2V0Q29tcHV0ZWRTdHlsZShzbGlkZSxudWxsKTsKCiAgICAgIGlmIChzdHlsZXMpCiAgICAgICAgYmdDb2xvciA9IHN0eWxlcy5nZXRQcm9wZXJ0eVZhbHVlKCJiYWNrZ3JvdW5kLWNvbG9yIik7CiAgICAgIGVsc2UgLy8gYnJva2VuIGltcGxlbWVudGF0aW9uIHByb2JhYmx5IGR1ZSBTYWZhcmkgb3IgS29ucXVlcm9yCiAgICAgIHsKICAgICAgICAvL2FsZXJ0KCJkZWZlY3RpdmUgaW1wbGVtZW50YXRpb24gb2YgZ2V0Q29tcHV0ZWRTdHlsZSgpIik7CiAgICAgICAgYmdDb2xvciA9ICJ0cmFuc3BhcmVudCI7CiAgICAgIH0KICAgIH0KICAgIGVsc2UKICAgICAgYmdDb2xvciA9PSAidHJhbnNwYXJlbnQiOwoKICAgIGlmIChiZ0NvbG9yID09ICJ0cmFuc3BhcmVudCIgfHwKICAgICAgICBiZ0NvbG9yLmluZGV4T2YoInJnYmEiKSA+PSAwIHx8CiAgICAgICAgYmdDb2xvci5pbmRleE9mKCJvcGFjaXR5IikgPj0gMCkKICAgIHsKICAgICAgdmFyIHNsaWRlQ2xhc3MgPSB0aGlzLmdldF9jbGFzc19saXN0KHNsaWRlKTsKCiAgICAgIGZvciAodmFyIGkgPSAwOyBpIDwgdGhpcy5iYWNrZ3JvdW5kcy5sZW5ndGg7IGkrKykKICAgICAgewogICAgICAgIGJhY2tncm91bmQgPSB0aGlzLmJhY2tncm91bmRzW2ldOwoKICAgICAgICB2YXIgYmdDbGFzcyA9IHRoaXMuZ2V0X2NsYXNzX2xpc3QoYmFja2dyb3VuZCk7CgogICAgICAgIGlmICh0aGlzLm1hdGNoaW5nX2JhY2tncm91bmQoc2xpZGVDbGFzcywgYmdDbGFzcykpCiAgICAgICAgICB0aGlzLnJlbW92ZV9jbGFzcyhiYWNrZ3JvdW5kLCAiaGlkZGVuIik7CiAgICAgICAgZWxzZQogICAgICAgICAgdGhpcy5hZGRfY2xhc3MoYmFja2dyb3VuZCwgImhpZGRlbiIpOwogICAgICB9CiAgICB9CiAgICBlbHNlIC8vIGZvcmNpYmx5IGhpZGUgYWxsIGJhY2tncm91bmRzCiAgICAgIHRoaXMuaGlkZV9iYWNrZ3JvdW5kcygpOwogIH0sCgogIGhpZGVfYmFja2dyb3VuZHM6IGZ1bmN0aW9uICgpIHsKICAgIGZvciAodmFyIGkgPSAwOyBpIDwgdGhpcy5iYWNrZ3JvdW5kcy5sZW5ndGg7IGkrKykKICAgIHsKICAgICAgYmFja2dyb3VuZCA9IHRoaXMuYmFja2dyb3VuZHNbaV07CiAgICAgIHRoaXMuYWRkX2NsYXNzKGJhY2tncm91bmQsICJoaWRkZW4iKTsKICAgIH0KICB9LAoKICAvLyBjb21wYXJlIGNsYXNzZXMgZm9yIHNsaWRlIGFuZCBiYWNrZ3JvdW5kCiAgbWF0Y2hpbmdfYmFja2dyb3VuZDogZnVuY3Rpb24gKHNsaWRlQ2xhc3MsIGJnQ2xhc3MpIHsKICAgIHZhciBpLCBjb3VudCwgcGF0dGVybiwgcmVzdWx0OwoKICAgIC8vIGRlZmluZSBwYXR0ZXJuIGFzIHJlZ3VsYXIgZXhwcmVzc2lvbgogICAgcGF0dGVybiA9IC9cdysvZzsKCiAgICAvLyBjaGVjayBiYWNrZ3JvdW5kIGNsYXNzIG5hbWVzCiAgICByZXN1bHQgPSBiZ0NsYXNzLm1hdGNoKHBhdHRlcm4pOwoKICAgIGZvciAoaSA9IGNvdW50ID0gMDsgaSA8IHJlc3VsdC5sZW5ndGg7IGkrKykKICAgIHsKICAgICAgaWYgKHJlc3VsdFtpXSA9PSAiaGlkZGVuIikKICAgICAgICBjb250aW51ZTsKCiAgICAgIGlmIChyZXN1bHRbaV0gPT0gImJhY2tncm91bmQiKQoJY29udGludWU7CgogICAgICArK2NvdW50OwogICAgfQoKICAgIGlmIChjb3VudCA9PSAwKSAgLy8gZGVmYXVsdCBtYXRjaAogICAgICByZXR1cm4gdHJ1ZTsKCiAgICAvLyBjaGVjayBmb3IgbWF0Y2hlcyBhbmQgcGxhY2UgcmVzdWx0IGluIGFycmF5CiAgICByZXN1bHQgPSBzbGlkZUNsYXNzLm1hdGNoKHBhdHRlcm4pOwoKICAgIC8vIG5vdyBjaGVjayBpZiBkZXNpcmVkIG5hbWUgaXMgcHJlc2VudCBmb3IgYmFja2dyb3VuZAogICAgZm9yIChpID0gY291bnQgPSAwOyBpIDwgcmVzdWx0Lmxlbmd0aDsgaSsrKQogICAgewogICAgICBpZiAocmVzdWx0W2ldID09ICJoaWRkZW4iKQogICAgICAgIGNvbnRpbnVlOwoKICAgICAgaWYgKHRoaXMuaGFzX3Rva2VuKGJnQ2xhc3MsIHJlc3VsdFtpXSkpCiAgICAgICAgcmV0dXJuIHRydWU7CiAgICB9CgogICAgcmV0dXJuIGZhbHNlOwogIH0sCgogIHJlc2l6ZWQ6IGZ1bmN0aW9uICgpIHsKICAgICB2YXIgd2lkdGggPSAwOwoKICAgICBpZiAoIHR5cGVvZiggd2luZG93LmlubmVyV2lkdGggKSA9PSAnbnVtYmVyJyApCiAgICAgICB3aWR0aCA9IHdpbmRvdy5pbm5lcldpZHRoOyAgLy8gTm9uIElFIGJyb3dzZXIKICAgICBlbHNlIGlmIChkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQgJiYgZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LmNsaWVudFdpZHRoKQogICAgICAgd2lkdGggPSBkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQuY2xpZW50V2lkdGg7ICAvLyBJRTYKICAgICBlbHNlIGlmIChkb2N1bWVudC5ib2R5ICYmIGRvY3VtZW50LmJvZHkuY2xpZW50V2lkdGgpCiAgICAgICB3aWR0aCA9IGRvY3VtZW50LmJvZHkuY2xpZW50V2lkdGg7IC8vIElFNAoKICAgICB2YXIgaGVpZ2h0ID0gMDsKCiAgICAgaWYgKCB0eXBlb2YoIHdpbmRvdy5pbm5lckhlaWdodCApID09ICdudW1iZXInICkKICAgICAgIGhlaWdodCA9IHdpbmRvdy5pbm5lckhlaWdodDsgIC8vIE5vbiBJRSBicm93c2VyCiAgICAgZWxzZSBpZiAoZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50ICYmIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5jbGllbnRIZWlnaHQpCiAgICAgICBoZWlnaHQgPSBkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQuY2xpZW50SGVpZ2h0OyAgLy8gSUU2CiAgICAgZWxzZSBpZiAoZG9jdW1lbnQuYm9keSAmJiBkb2N1bWVudC5ib2R5LmNsaWVudEhlaWdodCkKICAgICAgIGhlaWdodCA9IGRvY3VtZW50LmJvZHkuY2xpZW50SGVpZ2h0OyAvLyBJRTQKCiAgICAgaWYgKGhlaWdodCAmJiAod2lkdGgvaGVpZ2h0ID4gMS4wNSoxMDI0Lzc2OCkpCiAgICAgewogICAgICAgd2lkdGggPSBoZWlnaHQgKiAxMDI0LjAvNzY4OwogICAgIH0KCiAgICAgLy8gSUUgZmlyZXMgb25yZXNpemUgZXZlbiB3aGVuIG9ubHkgZm9udCBzaXplIGlzIGNoYW5nZWQhCiAgICAgLy8gc28gd2UgZG8gYSBjaGVjayB0byBhdm9pZCBibG9ja2luZyA8IGFuZCA+IGFjdGlvbnMKICAgICBpZiAod2lkdGggIT0gdzNjX3NsaWR5Lmxhc3Rfd2lkdGggfHwgaGVpZ2h0ICE9IHczY19zbGlkeS5sYXN0X2hlaWdodCkKICAgICB7CiAgICAgICBpZiAod2lkdGggPj0gMTEwMCkKICAgICAgICAgdzNjX3NsaWR5LnNpemVfaW5kZXggPSA1OyAgICAvLyA0CiAgICAgICBlbHNlIGlmICh3aWR0aCA+PSAxMDAwKQogICAgICAgICB3M2Nfc2xpZHkuc2l6ZV9pbmRleCA9IDQ7ICAgIC8vIDMKICAgICAgIGVsc2UgaWYgKHdpZHRoID49IDgwMCkKICAgICAgICAgdzNjX3NsaWR5LnNpemVfaW5kZXggPSAzOyAgICAvLyAyCiAgICAgICBlbHNlIGlmICh3aWR0aCA+PSA2MDApCiAgICAgICAgIHczY19zbGlkeS5zaXplX2luZGV4ID0gMjsgICAgLy8gMQogICAgICAgZWxzZSBpZiAod2lkdGgpCiAgICAgICAgIHczY19zbGlkeS5zaXplX2luZGV4ID0gMDsKCiAgICAgICAvLyBhZGQgaW4gZm9udCBzaXplIGFkanVzdG1lbnQgZnJvbSBtZXRhIGVsZW1lbnQgZS5nLgogICAgICAgLy8gPG1ldGEgbmFtZT0iZm9udC1zaXplLWFkanVzdG1lbnQiIGNvbnRlbnQ9Ii0yIiAvPgogICAgICAgLy8gdXNlZnVsIHdoZW4gc2xpZGVzIGhhdmUgdG9vIG11Y2ggY29udGVudCA7LSkKCiAgICAgICBpZiAoMCA8PSB3M2Nfc2xpZHkuc2l6ZV9pbmRleCArIHczY19zbGlkeS5zaXplX2FkanVzdG1lbnQgJiYKICAgICAgICAgICAgIHczY19zbGlkeS5zaXplX2luZGV4ICsgdzNjX3NsaWR5LnNpemVfYWRqdXN0bWVudCA8IHczY19zbGlkeS5zaXplcy5sZW5ndGgpCiAgICAgICAgIHczY19zbGlkeS5zaXplX2luZGV4ID0gdzNjX3NsaWR5LnNpemVfaW5kZXggKyB3M2Nfc2xpZHkuc2l6ZV9hZGp1c3RtZW50OwoKICAgICAgIC8vIGVuYWJsZXMgY3Jvc3MgYnJvd3NlciB1c2Ugb2YgcmVsYXRpdmUgd2lkdGgvaGVpZ2h0CiAgICAgICAvLyBvbiBvYmplY3QgZWxlbWVudHMgZm9yIHVzZSB3aXRoIFNWRyBhbmQgRmxhc2ggbWVkaWEKICAgICAgIHczY19zbGlkeS5hZGp1c3Rfb2JqZWN0X2RpbWVuc2lvbnMod2lkdGgsIGhlaWdodCk7CgogICAgICAgaWYgKGRvY3VtZW50LmJvZHkuc3R5bGUuZm9udFNpemUgIT0gdzNjX3NsaWR5LnNpemVzW3czY19zbGlkeS5zaXplX2luZGV4XSkKICAgICAgIHsKICAgICAgICAgZG9jdW1lbnQuYm9keS5zdHlsZS5mb250U2l6ZSA9IHczY19zbGlkeS5zaXplc1t3M2Nfc2xpZHkuc2l6ZV9pbmRleF07CiAgICAgICB9CgogICAgICAgdzNjX3NsaWR5Lmxhc3Rfd2lkdGggPSB3aWR0aDsKICAgICAgIHczY19zbGlkeS5sYXN0X2hlaWdodCA9IGhlaWdodDsKCiAgICAgICAvLyBmb3JjZSByZWZsb3cgdG8gd29yayBhcm91bmQgTW96aWxsYSBidWcKICAgICAgIGlmICh3M2Nfc2xpZHkubnNfcG9zKQogICAgICAgewogICAgICAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgICAgICB3M2Nfc2xpZHkuaGlkZV9zbGlkZShzbGlkZSk7CiAgICAgICAgIHczY19zbGlkeS5zaG93X3NsaWRlKHNsaWRlKTsKICAgICAgIH0KCiAgICAgICAvLyBmb3JjZSBjb3JyZWN0IHBvc2l0aW9uaW5nIG9mIHRvb2xiYXIKICAgICAgIHczY19zbGlkeS5yZWZyZXNoX3Rvb2xiYXIoMjAwKTsKICAgICB9CiAgfSwKCiAgc2Nyb2xsZWQ6IGZ1bmN0aW9uICgpIHsKICAgIGlmICh3M2Nfc2xpZHkudG9vbGJhciAmJiAhdzNjX3NsaWR5Lm5zX3BvcyAmJiAhdzNjX3NsaWR5LmllNykKICAgIHsKICAgICAgdzNjX3NsaWR5LmhhY2tfb2Zmc2V0ID0gdzNjX3NsaWR5LnNjcm9sbF94X29mZnNldCgpOwogICAgICAvLyBoaWRlIHRvb2xiYXIKICAgICAgdzNjX3NsaWR5LnRvb2xiYXIuc3R5bGUuZGlzcGxheSA9ICJub25lIjsKCiAgICAgIC8vIG1ha2UgaXQgcmVhcHBlYXIgbGF0ZXIKICAgICAgaWYgKHczY19zbGlkeS5zY3JvbGxoYWNrID09IDAgJiYgIXczY19zbGlkeS52aWV3X2FsbCkKICAgICAgewogICAgICAgIHNldFRpbWVvdXQoZnVuY3Rpb24gKCkge3czY19zbGlkeS5zaG93X3Rvb2xiYXIoKTsgfSwgMTAwMCk7CiAgICAgICAgdzNjX3NsaWR5LnNjcm9sbGhhY2sgPSAxOwogICAgICB9CiAgICB9CiAgfSwKCiAgaGlkZV90b29sYmFyOiBmdW5jdGlvbiAoKSB7CiAgICB3M2Nfc2xpZHkuYWRkX2NsYXNzKHczY19zbGlkeS50b29sYmFyLCAiaGlkZGVuIik7CiAgICB3aW5kb3cuZm9jdXMoKTsKICB9LAoKICAvLyB1c2VkIHRvIGVuc3VyZSBJRSByZWZyZXNoZXMgdG9vbGJhciBpbiBjb3JyZWN0IHBvc2l0aW9uCiAgcmVmcmVzaF90b29sYmFyOiBmdW5jdGlvbiAoaW50ZXJ2YWwpIHsKICAgIGlmICghdzNjX3NsaWR5Lm5zX3BvcyAmJiAhdzNjX3NsaWR5LmllNykKICAgIHsKICAgICAgdzNjX3NsaWR5LmhpZGVfdG9vbGJhcigpOwogICAgICBzZXRUaW1lb3V0KGZ1bmN0aW9uICgpIHt3M2Nfc2xpZHkuc2hvd190b29sYmFyKCk7fSwgaW50ZXJ2YWwpOwogICAgfQogIH0sCgogIC8vIHJlc3RvcmVzIHRvb2xiYXIgYWZ0ZXIgc2hvcnQgZGVsYXkKICBzaG93X3Rvb2xiYXI6IGZ1bmN0aW9uICgpIHsKICAgIGlmICh3M2Nfc2xpZHkud2FudF90b29sYmFyKQogICAgewogICAgICB3M2Nfc2xpZHkudG9vbGJhci5zdHlsZS5kaXNwbGF5ID0gImJsb2NrIjsKCiAgICAgIGlmICghdzNjX3NsaWR5Lm5zX3BvcykKICAgICAgewogICAgICAgIC8vIGFkanVzdCBwb3NpdGlvbiB0byBhbGxvdyBmb3Igc2Nyb2xsaW5nCiAgICAgICAgdmFyIHhvZmZzZXQgPSB3M2Nfc2xpZHkuc2Nyb2xsX3hfb2Zmc2V0KCk7CiAgICAgICAgdzNjX3NsaWR5LnRvb2xiYXIuc3R5bGUubGVmdCA9IHhvZmZzZXQ7CiAgICAgICAgdzNjX3NsaWR5LnRvb2xiYXIuc3R5bGUucmlnaHQgPSB4b2Zmc2V0OwoKICAgICAgICAvLyBkZXRlcm1pbmUgdmVydGljYWwgc2Nyb2xsIG9mZnNldAogICAgICAgIC8vdmFyIHlvZmZzZXQgPSBzY3JvbGxZT2Zmc2V0KCk7CgogICAgICAgIC8vIGJvdHRvbSBpcyBkb2MgaGVpZ2h0IC0gd2luZG93IGhlaWdodCAtIHNjcm9sbCBvZmZzZXQKICAgICAgICAvL3ZhciBib3R0b20gPSBkb2N1bWVudEhlaWdodCgpIC0gbGFzdEhlaWdodCAtIHlvZmZzZXQKCiAgICAgICAgLy9pZiAoeW9mZnNldCA+IDAgfHwgZG9jdW1lbnRIZWlnaHQoKSA+IGxhc3RIZWlnaHQpCiAgICAgICAgLy8gICBib3R0b20gKz0gMTY7ICAvLyBhbGxvdyBmb3IgaGVpZ2h0IG9mIHNjcm9sbGJhcgoKICAgICAgICB3M2Nfc2xpZHkudG9vbGJhci5zdHlsZS5ib3R0b20gPSAwOyAvL2JvdHRvbTsKICAgICAgfQoKICAgICAgdzNjX3NsaWR5LnJlbW92ZV9jbGFzcyh3M2Nfc2xpZHkudG9vbGJhciwgImhpZGRlbiIpOwogICAgfQoKICAgIHczY19zbGlkeS5zY3JvbGxoYWNrID0gMDsKCgogICAgLy8gc2V0IHRoZSBrZXlib2FyZCBmb2N1cyB0byB0aGUgaGVscCBsaW5rIG9uIHRoZQogICAgLy8gdG9vbGJhciB0byBlbnN1cmUgdGhhdCBkb2N1bWVudCBoYXMgdGhlIGZvY3VzCiAgICAvLyBJRSBkb2Vzbid0IGFsd2F5cyB3b3JrIHdpdGggd2luZG93LmZvY3VzKCkKICAgIC8vIGFuZCB0aGlzIGhhY2sgaGFzIGJlbmVmaXQgb2YgRW50ZXIgZm9yIGhlbHAKCiAgICB0cnkKICAgIHsKICAgICAgaWYgKCF3M2Nfc2xpZHkub3BlcmEpCiAgICAgICAgdzNjX3NsaWR5LnNldF9mb2N1cygpOwogICAgfQogICAgY2F0Y2ggKGUpCiAgICB7CiAgICB9CiAgfSwKCi8vIGludm9rZWQgdmlhIEYga2V5CiAgdG9nZ2xlX3Rvb2xiYXI6IGZ1bmN0aW9uICgpIHsKICAgIGlmICghdzNjX3NsaWR5LnZpZXdfYWxsKQogICAgewogICAgICBpZiAodzNjX3NsaWR5Lmhhc19jbGFzcyh3M2Nfc2xpZHkudG9vbGJhciwgImhpZGRlbiIpKQogICAgICB7CiAgICAgICAgdzNjX3NsaWR5LnJlbW92ZV9jbGFzcyh3M2Nfc2xpZHkudG9vbGJhciwgImhpZGRlbiIpCiAgICAgICAgdzNjX3NsaWR5LndhbnRfdG9vbGJhciA9IDE7CiAgICAgIH0KICAgICAgZWxzZQogICAgICB7CiAgICAgICAgdzNjX3NsaWR5LmFkZF9jbGFzcyh3M2Nfc2xpZHkudG9vbGJhciwgImhpZGRlbiIpCiAgICAgICAgdzNjX3NsaWR5LndhbnRfdG9vbGJhciA9IDA7CiAgICAgIH0KICAgIH0KICB9LAoKICBzY3JvbGxfeF9vZmZzZXQ6IGZ1bmN0aW9uICgpIHsKICAgIGlmICh3aW5kb3cucGFnZVhPZmZzZXQpCiAgICAgIHJldHVybiBzZWxmLnBhZ2VYT2Zmc2V0OwoKICAgIGlmIChkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQgJiYgCiAgICAgICAgICAgICBkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQuc2Nyb2xsTGVmdCkKICAgICAgcmV0dXJuIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5zY3JvbGxMZWZ0OwoKICAgIGlmIChkb2N1bWVudC5ib2R5KQogICAgICByZXR1cm4gZG9jdW1lbnQuYm9keS5zY3JvbGxMZWZ0OwoKICAgIHJldHVybiAwOwogIH0sCgogIHNjcm9sbF95X29mZnNldDogZnVuY3Rpb24gKCkgewogICAgaWYgKHdpbmRvdy5wYWdlWU9mZnNldCkKICAgICAgcmV0dXJuIHNlbGYucGFnZVlPZmZzZXQ7CgogICAgaWYgKGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCAmJiAKICAgICAgICAgICAgIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5zY3JvbGxUb3ApCiAgICAgIHJldHVybiBkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQuc2Nyb2xsVG9wOwoKICAgIGlmIChkb2N1bWVudC5ib2R5KQogICAgICByZXR1cm4gZG9jdW1lbnQuYm9keS5zY3JvbGxUb3A7CgogICAgcmV0dXJuIDA7CiAgfSwKCiAgLy8gbG9va2luZyBmb3IgYSB3YXkgdG8gZGV0ZXJtaW5lIGhlaWdodCBvZiBzbGlkZSBjb250ZW50CiAgLy8gdGhlIHNsaWRlIGl0c2VsZiBpcyBzZXQgdG8gdGhlIGhlaWdodCBvZiB0aGUgd2luZG93CiAgb3B0aW1pemVfZm9udF9zaXplOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwoKICAgIC8vdmFyIGRoID0gZG9jdW1lbnRIZWlnaHQoKTsgLy9nZXREb2NIZWlnaHQoZG9jdW1lbnQpOwogICAgdmFyIGRoID0gc2xpZGUuc2Nyb2xsSGVpZ2h0OwogICAgdmFyIHdoID0gZ2V0V2luZG93SGVpZ2h0KCk7CiAgICB2YXIgdSA9IDEwMCAqIGRoIC8gd2g7CgogICAgYWxlcnQoIndpbmRvdyB1dGlsaXphdGlvbiA9ICIgKyB1ICsgIiUgKGRvYyAiCiAgICAgICsgZGggKyAiIHdpbiAiICsgd2ggKyAiKSIpOwogIH0sCgogIC8vIGZyb20gZG9jdW1lbnQgb2JqZWN0CiAgZ2V0X2RvY19oZWlnaHQ6IGZ1bmN0aW9uIChkb2MpIHsKICAgIGlmICghZG9jKQogICAgICBkb2MgPSBkb2N1bWVudDsKCiAgICBpZiAoZG9jICYmIGRvYy5ib2R5ICYmIGRvYy5ib2R5Lm9mZnNldEhlaWdodCkKICAgICAgcmV0dXJuIGRvYy5ib2R5Lm9mZnNldEhlaWdodDsgIC8vIG5zL2dlY2tvIHN5bnRheAoKICAgIGlmIChkb2MgJiYgZG9jLmJvZHkgJiYgZG9jLmJvZHkuc2Nyb2xsSGVpZ2h0KQogICAgICByZXR1cm4gZG9jLmJvZHkuc2Nyb2xsSGVpZ2h0OwoKICAgIGFsZXJ0KCJjb3VsZG4ndCBkZXRlcm1pbmUgZG9jdW1lbnQgaGVpZ2h0Iik7CiAgfSwKCiAgZ2V0X3dpbmRvd19oZWlnaHQ6IGZ1bmN0aW9uICgpIHsKICAgIGlmICggdHlwZW9mKCB3aW5kb3cuaW5uZXJIZWlnaHQgKSA9PSAnbnVtYmVyJyApCiAgICAgIHJldHVybiB3aW5kb3cuaW5uZXJIZWlnaHQ7ICAvLyBOb24gSUUgYnJvd3NlcgoKICAgIGlmIChkb2N1bWVudC5kb2N1bWVudEVsZW1lbnQgJiYgZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LmNsaWVudEhlaWdodCkKICAgICAgcmV0dXJuIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5jbGllbnRIZWlnaHQ7ICAvLyBJRTYKCiAgICBpZiAoZG9jdW1lbnQuYm9keSAmJiBkb2N1bWVudC5ib2R5LmNsaWVudEhlaWdodCkKICAgICAgcmV0dXJuIGRvY3VtZW50LmJvZHkuY2xpZW50SGVpZ2h0OyAvLyBJRTQKICB9LAoKICBkb2N1bWVudF9oZWlnaHQ6IGZ1bmN0aW9uICgpIHsKICAgIHZhciBzaCwgb2g7CgogICAgc2ggPSBkb2N1bWVudC5ib2R5LnNjcm9sbEhlaWdodDsKICAgIG9oID0gZG9jdW1lbnQuYm9keS5vZmZzZXRIZWlnaHQ7CgogICAgaWYgKHNoICYmIG9oKQogICAgewogICAgICByZXR1cm4gKHNoID4gb2ggPyBzaCA6IG9oKTsKICAgIH0KCiAgICAvLyBubyBpZGVhIQogICAgcmV0dXJuIDA7CiAgfSwKCiAgc21hbGxlcjogZnVuY3Rpb24gKCkgewogICAgaWYgKHczY19zbGlkeS5zaXplX2luZGV4ID4gMCkKICAgIHsKICAgICAgLS13M2Nfc2xpZHkuc2l6ZV9pbmRleDsKICAgIH0KCiAgICB3M2Nfc2xpZHkudG9vbGJhci5zdHlsZS5kaXNwbGF5ID0gIm5vbmUiOwogICAgZG9jdW1lbnQuYm9keS5zdHlsZS5mb250U2l6ZSA9IHczY19zbGlkeS5zaXplc1t3M2Nfc2xpZHkuc2l6ZV9pbmRleF07CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwogICAgdzNjX3NsaWR5LnNob3dfc2xpZGUoc2xpZGUpOwogICAgc2V0VGltZW91dChmdW5jdGlvbiAoKSB7dzNjX3NsaWR5LnNob3dfdG9vbGJhcigpOyB9LCA1MCk7CiAgfSwKCiAgYmlnZ2VyOiBmdW5jdGlvbiAoKSB7CiAgICBpZiAodzNjX3NsaWR5LnNpemVfaW5kZXggPCB3M2Nfc2xpZHkuc2l6ZXMubGVuZ3RoIC0gMSkKICAgIHsKICAgICAgKyt3M2Nfc2xpZHkuc2l6ZV9pbmRleDsKICAgIH0KCiAgICB3M2Nfc2xpZHkudG9vbGJhci5zdHlsZS5kaXNwbGF5ID0gIm5vbmUiOwogICAgZG9jdW1lbnQuYm9keS5zdHlsZS5mb250U2l6ZSA9IHczY19zbGlkeS5zaXplc1t3M2Nfc2xpZHkuc2l6ZV9pbmRleF07CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwogICAgdzNjX3NsaWR5LmhpZGVfc2xpZGUoc2xpZGUpOwogICAgdzNjX3NsaWR5LnNob3dfc2xpZGUoc2xpZGUpOwogICAgc2V0VGltZW91dChmdW5jdGlvbiAoKSB7dzNjX3NsaWR5LnNob3dfdG9vbGJhcigpOyB9LCA1MCk7CiAgfSwKCiAgLy8gZW5hYmxlcyBjcm9zcyBicm93c2VyIHVzZSBvZiByZWxhdGl2ZSB3aWR0aC9oZWlnaHQKICAvLyBvbiBvYmplY3QgZWxlbWVudHMgZm9yIHVzZSB3aXRoIFNWRyBhbmQgRmxhc2ggbWVkaWEKICAvLyB3aXRoIHRoYW5rcyB0byBJdmFuIEhlcm1hbiBmb3IgdGhlIHN1Z2dlc3Rpb24KICBhZGp1c3Rfb2JqZWN0X2RpbWVuc2lvbnM6IGZ1bmN0aW9uICh3aWR0aCwgaGVpZ2h0KSB7CiAgICBmb3IoIHZhciBpID0gMDsgaSA8IHczY19zbGlkeS5vYmplY3RzLmxlbmd0aDsgaSsrICkKICAgIHsKICAgICAgdmFyIG9iaiA9IHRoaXMub2JqZWN0c1tpXTsKICAgICAgdmFyIG1pbWVUeXBlID0gb2JqLmdldEF0dHJpYnV0ZSgidHlwZSIpOwoKICAgICAgaWYgKG1pbWVUeXBlID09ICJpbWFnZS9zdmcreG1sIiB8fCBtaW1lVHlwZSA9PSAiYXBwbGljYXRpb24veC1zaG9ja3dhdmUtZmxhc2giKQogICAgICB7CiAgICAgICAgaWYgKCAhb2JqLmluaXRpYWxXaWR0aCApIAogICAgICAgICAgb2JqLmluaXRpYWxXaWR0aCA9IG9iai5nZXRBdHRyaWJ1dGUoIndpZHRoIik7CgogICAgICAgIGlmICggIW9iai5pbml0aWFsSGVpZ2h0ICkgCiAgICAgICAgICBvYmouaW5pdGlhbEhlaWdodCA9IG9iai5nZXRBdHRyaWJ1dGUoImhlaWdodCIpOwoKICAgICAgICBpZiAoIG9iai5pbml0aWFsV2lkdGggJiYgb2JqLmluaXRpYWxXaWR0aC5jaGFyQXQob2JqLmluaXRpYWxXaWR0aC5sZW5ndGgtMSkgPT0gIiUiICkKICAgICAgICB7CiAgICAgICAgICB2YXIgdyA9IHBhcnNlSW50KG9iai5pbml0aWFsV2lkdGguc2xpY2UoMCwgb2JqLmluaXRpYWxXaWR0aC5sZW5ndGgtMSkpOwogICAgICAgICAgdmFyIG5ld1cgPSB3aWR0aCAqICh3LzEwMC4wKTsKICAgICAgICAgIG9iai5zZXRBdHRyaWJ1dGUoIndpZHRoIixuZXdXKTsKICAgICAgICB9CgogICAgICAgIGlmICggb2JqLmluaXRpYWxIZWlnaHQgJiYKICAgICAgICAgICAgIG9iai5pbml0aWFsSGVpZ2h0LmNoYXJBdChvYmouaW5pdGlhbEhlaWdodC5sZW5ndGgtMSkgPT0gIiUiICkKICAgICAgICB7CiAgICAgICAgICB2YXIgaCA9IHBhcnNlSW50KG9iai5pbml0aWFsSGVpZ2h0LnNsaWNlKDAsIG9iai5pbml0aWFsSGVpZ2h0Lmxlbmd0aC0xKSk7CiAgICAgICAgICB2YXIgbmV3SCA9IGhlaWdodCAqIChoLzEwMC4wKTsKICAgICAgICAgIG9iai5zZXRBdHRyaWJ1dGUoImhlaWdodCIsIG5ld0gpOwogICAgICAgIH0KICAgICAgfQogICAgfQogIH0sCgogIC8vIG5lZWRlZCBmb3IgT3BlcmEgdG8gaW5oaWJpdCBkZWZhdWx0IGJlaGF2aW9yCiAgLy8gc2luY2UgT3BlcmEgZGVsaXZlcnMga2V5UHJlc3MgZXZlbiBpZiBrZXlEb3duCiAgLy8gd2FzIGNhbmNlbGxlZAogIGtleV9wcmVzczogZnVuY3Rpb24gKGV2ZW50KSB7CiAgICBpZiAoIWV2ZW50KQogICAgICBldmVudCA9IHdpbmRvdy5ldmVudDsKCiAgICBpZiAoIXczY19zbGlkeS5rZXlfd2FudGVkKQogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CgogICAgcmV0dXJuIHRydWU7CiAgfSwKCiAgLy8gIFNlZSBlLmcuIGh0dHA6Ly93d3cucXVpcmtzbW9kZS5vcmcvanMvZXZlbnRzL2tleXMuaHRtbCBmb3Iga2V5Y29kZXMKICBrZXlfZG93bjogZnVuY3Rpb24gKGV2ZW50KSB7CiAgICB2YXIga2V5LCB0YXJnZXQsIHRhZzsKCiAgICB3M2Nfc2xpZHkua2V5X3dhbnRlZCA9IHRydWU7CgogICAgaWYgKCFldmVudCkKICAgICAgZXZlbnQgPSB3aW5kb3cuZXZlbnQ7CgogICAgLy8ga2x1ZGdlIGFyb3VuZCBOUy9JRSBkaWZmZXJlbmNlcyAKICAgIGlmICh3aW5kb3cuZXZlbnQpCiAgICB7CiAgICAgIGtleSA9IHdpbmRvdy5ldmVudC5rZXlDb2RlOwogICAgICB0YXJnZXQgPSB3aW5kb3cuZXZlbnQuc3JjRWxlbWVudDsKICAgIH0KICAgIGVsc2UgaWYgKGV2ZW50LndoaWNoKQogICAgewogICAgICBrZXkgPSBldmVudC53aGljaDsKICAgICAgdGFyZ2V0ID0gZXZlbnQudGFyZ2V0OwogICAgfQogICAgZWxzZQogICAgICByZXR1cm4gdHJ1ZTsgLy8gWWlrZXMhIHVua25vd24gYnJvd3NlcgoKICAgIC8vIGlnbm9yZSBldmVudCBpZiBrZXkgdmFsdWUgaXMgemVybwogICAgLy8gYXMgZm9yIGFsdCBvbiBPcGVyYSBhbmQgS29ucXVlcm9yCiAgICBpZiAoIWtleSkKICAgICAgIHJldHVybiB0cnVlOwoKICAgIC8vIGF2b2lkIGludGVyZmVyaW5nIHdpdGgga2V5c3Ryb2tlCiAgICAvLyBiZWhhdmlvciBmb3Igbm9uLXNsaWR5IGNocm9tZSBlbGVtZW50cwogICAgaWYgKCF3M2Nfc2xpZHkuc2xpZHlfY2hyb21lKHRhcmdldCkgJiYKICAgICAgICB3M2Nfc2xpZHkuc3BlY2lhbF9lbGVtZW50KHRhcmdldCkpCiAgICAgIHJldHVybiB0cnVlOwoKICAgIC8vIGNoZWNrIGZvciBjb25jdXJyZW50IGNvbnRyb2wvY29tbWFuZC9hbHQga2V5CiAgICAvLyBidXQgYXJlIHRoZXNlIG9ubHkgcHJlc2VudCBvbiBtb3VzZSBldmVudHM/CgogICAgaWYgKGV2ZW50LmN0cmxLZXkgfHwgZXZlbnQuYWx0S2V5IHx8IGV2ZW50Lm1ldGFLZXkpCiAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAvLyBkaXNtaXNzIHRhYmxlIG9mIGNvbnRlbnRzIGlmIHZpc2libGUKICAgIGlmICh3M2Nfc2xpZHkuaXNfc2hvd25fdG9jKCkgJiYga2V5ICE9IDkgJiYga2V5ICE9IDE2ICYmIGtleSAhPSAzOCAmJiBrZXkgIT0gNDApCiAgICB7CiAgICAgIHczY19zbGlkeS5oaWRlX3RhYmxlX29mX2NvbnRlbnRzKHRydWUpOwoKICAgICAgaWYgKGtleSA9PSAyNyB8fCBrZXkgPT0gODQgfHwga2V5ID09IDY3KQogICAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KCiAgICBpZiAoa2V5ID09IDM0KSAvLyBQYWdlIERvd24KICAgIHsKICAgICAgaWYgKHczY19zbGlkeS52aWV3X2FsbCkKICAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAgIHczY19zbGlkeS5uZXh0X3NsaWRlKGZhbHNlKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDMzKSAvLyBQYWdlIFVwCiAgICB7CiAgICAgIGlmICh3M2Nfc2xpZHkudmlld19hbGwpCiAgICAgICAgcmV0dXJuIHRydWU7CgogICAgICB3M2Nfc2xpZHkucHJldmlvdXNfc2xpZGUoZmFsc2UpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gMzIpIC8vIHNwYWNlIGJhcgogICAgewogICAgICB3M2Nfc2xpZHkubmV4dF9zbGlkZSh0cnVlKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDM3KSAvLyBMZWZ0IGFycm93CiAgICB7CiAgICAgIHczY19zbGlkeS5wcmV2aW91c19zbGlkZSghZXZlbnQuc2hpZnRLZXkpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gMzYpIC8vIEhvbWUKICAgIHsKICAgICAgdzNjX3NsaWR5LmZpcnN0X3NsaWRlKCk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSAzNSkgLy8gRW5kCiAgICB7CiAgICAgIHczY19zbGlkeS5sYXN0X3NsaWRlKCk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSAzOSkgLy8gUmlnaHQgYXJyb3cKICAgIHsKICAgICAgdzNjX3NsaWR5Lm5leHRfc2xpZGUoIWV2ZW50LnNoaWZ0S2V5KTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDEzKSAvLyBFbnRlcgogICAgewogICAgICBpZiAodzNjX3NsaWR5Lm91dGxpbmUpCiAgICAgIHsKICAgICAgICBpZiAodzNjX3NsaWR5Lm91dGxpbmUudmlzaWJsZSkKICAgICAgICAgIHczY19zbGlkeS5mb2xkKHczY19zbGlkeS5vdXRsaW5lKTsKICAgICAgICBlbHNlCiAgICAgICAgICB3M2Nfc2xpZHkudW5mb2xkKHczY19zbGlkeS5vdXRsaW5lKTsKICAgICAgICAgIAogICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgICB9CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gMTg4KSAgLy8gPCBmb3Igc21hbGxlciBmb250cwogICAgewogICAgICB3M2Nfc2xpZHkuc21hbGxlcigpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gMTkwKSAgLy8gPiBmb3IgbGFyZ2VyIGZvbnRzCiAgICB7CiAgICAgIHczY19zbGlkeS5iaWdnZXIoKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDE4OSB8fCBrZXkgPT0gMTA5KSAgLy8gLSBmb3Igc21hbGxlciBmb250cwogICAgewogICAgICB3M2Nfc2xpZHkuc21hbGxlcigpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gMTg3IHx8IGtleSA9PSAxOTEgfHwga2V5ID09IDEwNykgIC8vID0gKyAgZm9yIGxhcmdlciBmb250cwogICAgewogICAgICB3M2Nfc2xpZHkuYmlnZ2VyKCk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSA4MykgIC8vIFMgZm9yIHNtYWxsZXIgZm9udHMKICAgIHsKICAgICAgdzNjX3NsaWR5LnNtYWxsZXIoKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDY2KSAgLy8gQiBmb3IgbGFyZ2VyIGZvbnRzCiAgICB7CiAgICAgIHczY19zbGlkeS5iaWdnZXIoKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDkwKSAgLy8gWiBmb3IgbGFzdCBzbGlkZQogICAgewogICAgICB3M2Nfc2xpZHkubGFzdF9zbGlkZSgpOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICBlbHNlIGlmIChrZXkgPT0gNzApICAvLyBGIGZvciB0b2dnbGUgdG9vbGJhcgogICAgewogICAgICB3M2Nfc2xpZHkudG9nZ2xlX3Rvb2xiYXIoKTsKICAgICAgcmV0dXJuIHczY19zbGlkeS5jYW5jZWwoZXZlbnQpOwogICAgfQogICAgZWxzZSBpZiAoa2V5ID09IDY1KSAgLy8gQSBmb3IgdG9nZ2xlIHZpZXcgc2luZ2xlL2FsbCBzbGlkZXMKICAgIHsKICAgICAgdzNjX3NsaWR5LnRvZ2dsZV92aWV3KCk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSA3NSkgIC8vIHRvZ2dsZSBhY3Rpb24gb2YgbGVmdCBjbGljayBmb3IgbmV4dCBwYWdlCiAgICB7CiAgICAgIHczY19zbGlkeS5tb3VzZV9jbGlja19lbmFibGVkID0gIXczY19zbGlkeS5tb3VzZV9jbGlja19lbmFibGVkOwogICAgICB2YXIgYWxlcnRfbXNnID0gKHczY19zbGlkeS5tb3VzZV9jbGlja19lbmFibGVkID8KICAgICAgICAgICAgICAgICJlbmFibGVkIiA6ICJkaXNhYmxlZCIpICsgICIgbW91c2UgY2xpY2sgYWR2YW5jZSI7CgogICAgICBhbGVydCh3M2Nfc2xpZHkubG9jYWxpemUoYWxlcnRfbXNnKSk7CiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSA4NCB8fCBrZXkgPT0gNjcpICAvLyBUIG9yIEMgZm9yIHRhYmxlIG9mIGNvbnRlbnRzCiAgICB7CiAgICAgIGlmICh3M2Nfc2xpZHkudG9jKQogICAgICAgIHczY19zbGlkeS50b2dnbGVfdGFibGVfb2ZfY29udGVudHMoKTsKCiAgICAgIHJldHVybiB3M2Nfc2xpZHkuY2FuY2VsKGV2ZW50KTsKICAgIH0KICAgIGVsc2UgaWYgKGtleSA9PSA3MikgLy8gSCBmb3IgaGVscAogICAgewogICAgICB3aW5kb3cubG9jYXRpb24gPSB3M2Nfc2xpZHkuaGVscF9wYWdlOwogICAgICByZXR1cm4gdzNjX3NsaWR5LmNhbmNlbChldmVudCk7CiAgICB9CiAgICAvL2Vsc2UgYWxlcnQoImtleSBjb2RlIGlzICIrIGtleSk7CgogICAgcmV0dXJuIHRydWU7CiAgfSwKCiAgLy8gc2FmZSBmb3IgYm90aCB0ZXh0L2h0bWwgYW5kIGFwcGxpY2F0aW9uL3hodG1sK3htbAogIGNyZWF0ZV9lbGVtZW50OiBmdW5jdGlvbiAobmFtZSkgewogICAgaWYgKHRoaXMueGh0bWwgJiYgKHR5cGVvZiBkb2N1bWVudC5jcmVhdGVFbGVtZW50TlMgIT0gJ3VuZGVmaW5lZCcpKQogICAgICByZXR1cm4gZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwgbmFtZSkKCiAgICByZXR1cm4gZG9jdW1lbnQuY3JlYXRlRWxlbWVudChuYW1lKTsKICB9LAoKICBnZXRfZWxlbWVudF9zdHlsZTogZnVuY3Rpb24gKGVsZW0sIElFU3R5bGVQcm9wLCBDU1NTdHlsZVByb3ApIHsKICAgIGlmIChlbGVtLmN1cnJlbnRTdHlsZSkKICAgIHsKICAgICAgcmV0dXJuIGVsZW0uY3VycmVudFN0eWxlW0lFU3R5bGVQcm9wXTsKICAgIH0KICAgIGVsc2UgaWYgKHdpbmRvdy5nZXRDb21wdXRlZFN0eWxlKQogICAgewogICAgICB2YXIgY29tcFN0eWxlID0gd2luZG93LmdldENvbXB1dGVkU3R5bGUoZWxlbSwgIiIpOwogICAgICByZXR1cm4gY29tcFN0eWxlLmdldFByb3BlcnR5VmFsdWUoQ1NTU3R5bGVQcm9wKTsKICAgIH0KICAgIHJldHVybiAiIjsKICB9LAoKICAvLyB0aGUgc3RyaW5nIHN0ciBpcyBhIHdoaXRlc3BhY2Ugc2VwYXJhdGVkIGxpc3Qgb2YgdG9rZW5zCiAgLy8gdGVzdCBpZiBzdHIgY29udGFpbnMgYSBwYXJ0aWN1bGFyIHRva2VuLCBlLmcuICJzbGlkZSIKICBoYXNfdG9rZW46IGZ1bmN0aW9uIChzdHIsIHRva2VuKSB7CiAgICBpZiAoc3RyKQogICAgewogICAgICAvLyBkZWZpbmUgcGF0dGVybiBhcyByZWd1bGFyIGV4cHJlc3Npb24KICAgICAgdmFyIHBhdHRlcm4gPSAvXHcrL2c7CgogICAgICAvLyBjaGVjayBmb3IgbWF0Y2hlcwogICAgICAvLyBwbGFjZSByZXN1bHQgaW4gYXJyYXkKICAgICAgdmFyIHJlc3VsdCA9IHN0ci5tYXRjaChwYXR0ZXJuKTsKCiAgICAgIC8vIG5vdyBjaGVjayBpZiBkZXNpcmVkIHRva2VuIGlzIHByZXNlbnQKICAgICAgZm9yICh2YXIgaSA9IDA7IGkgPCByZXN1bHQubGVuZ3RoOyBpKyspCiAgICAgIHsKICAgICAgICBpZiAocmVzdWx0W2ldID09IHRva2VuKQogICAgICAgICAgcmV0dXJuIHRydWU7CiAgICAgIH0KICAgIH0KCiAgICByZXR1cm4gZmFsc2U7CiAgfSwKCiAgZ2V0X2NsYXNzX2xpc3Q6IGZ1bmN0aW9uIChlbGVtZW50KSB7CiAgICBpZiAodHlwZW9mIGVsZW1lbnQuY2xhc3NOYW1lICE9ICd1bmRlZmluZWQnKQogICAgICByZXR1cm4gZWxlbWVudC5jbGFzc05hbWU7CgogICAgcmV0dXJuIGVsZW1lbnQuZ2V0QXR0cmlidXRlKCJjbGFzcyIpOwogIH0sCgogIGhhc19jbGFzczogZnVuY3Rpb24gKGVsZW1lbnQsIG5hbWUpIHsKICAgIGlmIChlbGVtZW50Lm5vZGVUeXBlICE9IDEpCiAgICAgIHJldHVybiBmYWxzZTsKCiAgICB2YXIgcmVnZXhwID0gbmV3IFJlZ0V4cCgiKF58ICkiICsgbmFtZSArICJcVyoiKTsKCiAgICBpZiAodHlwZW9mIGVsZW1lbnQuY2xhc3NOYW1lICE9ICd1bmRlZmluZWQnKQogICAgICByZXR1cm4gcmVnZXhwLnRlc3QoZWxlbWVudC5jbGFzc05hbWUpOwoKICAgIHJldHVybiByZWdleHAudGVzdChlbGVtZW50LmdldEF0dHJpYnV0ZSgiY2xhc3MiKSk7CiAgfSwKCiAgcmVtb3ZlX2NsYXNzOiBmdW5jdGlvbiAoZWxlbWVudCwgbmFtZSkgewogICAgdmFyIHJlZ2V4cCA9IG5ldyBSZWdFeHAoIihefCApIiArIG5hbWUgKyAiXFcqIik7CiAgICB2YXIgY2xzdmFsID0gIiI7CgogICAgaWYgKHR5cGVvZiBlbGVtZW50LmNsYXNzTmFtZSAhPSAndW5kZWZpbmVkJykKICAgIHsKICAgICAgY2xzdmFsID0gZWxlbWVudC5jbGFzc05hbWU7CgogICAgICBpZiAoY2xzdmFsKQogICAgICB7CiAgICAgICAgY2xzdmFsID0gY2xzdmFsLnJlcGxhY2UocmVnZXhwLCAiIik7CiAgICAgICAgZWxlbWVudC5jbGFzc05hbWUgPSBjbHN2YWw7CiAgICAgIH0KICAgIH0KICAgIGVsc2UKICAgIHsKICAgICAgY2xzdmFsID0gZWxlbWVudC5nZXRBdHRyaWJ1dGUoImNsYXNzIik7CgogICAgICBpZiAoY2xzdmFsKQogICAgICB7CiAgICAgICAgY2xzdmFsID0gY2xzdmFsLnJlcGxhY2UocmVnZXhwLCAiIik7CiAgICAgICAgZWxlbWVudC5zZXRBdHRyaWJ1dGUoImNsYXNzIiwgY2xzdmFsKTsKICAgICAgfQogICAgfQogIH0sCgogIGFkZF9jbGFzczogZnVuY3Rpb24gKGVsZW1lbnQsIG5hbWUpIHsKICAgIGlmICghdGhpcy5oYXNfY2xhc3MoZWxlbWVudCwgbmFtZSkpCiAgICB7CiAgICAgIGlmICh0eXBlb2YgZWxlbWVudC5jbGFzc05hbWUgIT0gJ3VuZGVmaW5lZCcpCiAgICAgICAgZWxlbWVudC5jbGFzc05hbWUgKz0gIiAiICsgbmFtZTsKICAgICAgZWxzZQogICAgICB7CiAgICAgICAgdmFyIGNsc3ZhbCA9IGVsZW1lbnQuZ2V0QXR0cmlidXRlKCJjbGFzcyIpOwogICAgICAgIGNsc3ZhbCA9IGNsc3ZhbCA/IGNsc3ZhbCArICIgIiArIG5hbWUgOiBuYW1lOwogICAgICAgIGVsZW1lbnQuc2V0QXR0cmlidXRlKCJjbGFzcyIsIGNsc3ZhbCk7CiAgICAgIH0KICAgIH0KICB9LAoKICAvLyBIVE1MIGVsZW1lbnRzIHRoYXQgY2FuIGJlIHVzZWQgd2l0aCBjbGFzcz0iaW5jcmVtZW50YWwiCiAgLy8gbm90ZSB0aGF0IHlvdSBjYW4gYWxzbyBwdXQgdGhlIGNsYXNzIG9uIGNvbnRhaW5lcnMgbGlrZQogIC8vIHVwLCBvbCwgZGwsIGFuZCBkaXYgdG8gbWFrZSB0aGVpciBjb250ZW50cyBhcHBlYXIKICAvLyBpbmNyZW1lbnRhbGx5LiBVcHBlciBjYXNlIGlzIHVzZWQgc2luY2UgdGhpcyBpcyB3aGF0CiAgLy8gYnJvd3NlcnMgcmVwb3J0IGZvciBIVE1MIG5vZGUgbmFtZXMgKHRleHQvaHRtbCkuCiAgaW5jcmVtZW50YWxfZWxlbWVudHM6IG51bGwsCiAgb2theV9mb3JfaW5jcmVtZW50YWw6IGZ1bmN0aW9uIChuYW1lKSB7CiAgICBpZiAoIXRoaXMuaW5jcmVtZW50YWxfZWxlbWVudHMpCiAgICB7CiAgICAgIHZhciBpbmNsaXN0ID0gbmV3IEFycmF5KCk7CiAgICAgIGluY2xpc3RbInAiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbInByZSJdID0gdHJ1ZTsKICAgICAgaW5jbGlzdFsibGkiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbImJsb2NrcXVvdGUiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbImR0Il0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJkZCJdID0gdHJ1ZTsKICAgICAgaW5jbGlzdFsiaDIiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbImgzIl0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJoNCJdID0gdHJ1ZTsKICAgICAgaW5jbGlzdFsiaDUiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbImg2Il0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJzcGFuIl0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJhZGRyZXNzIl0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJ0YWJsZSJdID0gdHJ1ZTsKICAgICAgaW5jbGlzdFsidHIiXSA9IHRydWU7CiAgICAgIGluY2xpc3RbInRoIl0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJ0ZCJdID0gdHJ1ZTsKICAgICAgaW5jbGlzdFsiaW1nIl0gPSB0cnVlOwogICAgICBpbmNsaXN0WyJvYmplY3QiXSA9IHRydWU7CiAgICAgIHRoaXMuaW5jcmVtZW50YWxfZWxlbWVudHMgPSBpbmNsaXN0OwogICAgfQogICAgcmV0dXJuIHRoaXMuaW5jcmVtZW50YWxfZWxlbWVudHNbbmFtZS50b0xvd2VyQ2FzZSgpXTsKICB9LAoKICBuZXh0X2luY3JlbWVudGFsX2l0ZW06IGZ1bmN0aW9uIChub2RlKSB7CiAgICB2YXIgYnIgPSB0aGlzLmlzX3hodG1sID8gImJyIiA6ICJCUiI7CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwoKICAgIGZvciAoOzspCiAgICB7CiAgICAgIG5vZGUgPSB3M2Nfc2xpZHkubmV4dF9ub2RlKHNsaWRlLCBub2RlKTsKCiAgICAgIGlmIChub2RlID09IG51bGwgfHwgbm9kZS5wYXJlbnROb2RlID09IG51bGwpCiAgICAgICAgYnJlYWs7CgogICAgICBpZiAobm9kZS5ub2RlVHlwZSA9PSAxKSAgLy8gRUxFTUVOVAogICAgICB7CiAgICAgICAgaWYgKG5vZGUubm9kZU5hbWUgPT0gYnIpCiAgICAgICAgICBjb250aW51ZTsKCiAgICAgICAgaWYgKHczY19zbGlkeS5oYXNfY2xhc3Mobm9kZSwgImluY3JlbWVudGFsIikKICAgICAgICAgICAgICYmIHczY19zbGlkeS5va2F5X2Zvcl9pbmNyZW1lbnRhbChub2RlLm5vZGVOYW1lKSkKICAgICAgICAgIHJldHVybiBub2RlOwoKICAgICAgICBpZiAodzNjX3NsaWR5Lmhhc19jbGFzcyhub2RlLnBhcmVudE5vZGUsICJpbmNyZW1lbnRhbCIpCiAgICAgICAgICAgICAmJiAhdzNjX3NsaWR5Lmhhc19jbGFzcyhub2RlLCAibm9uLWluY3JlbWVudGFsIikpCiAgICAgICAgICByZXR1cm4gbm9kZTsKICAgICAgfQogICAgfQoKICAgIHJldHVybiBub2RlOwogIH0sCgogIHByZXZpb3VzX2luY3JlbWVudGFsX2l0ZW06IGZ1bmN0aW9uIChub2RlKSB7CiAgICB2YXIgYnIgPSB0aGlzLmlzX3hodG1sID8gImJyIiA6ICJCUiI7CiAgICB2YXIgc2xpZGUgPSB3M2Nfc2xpZHkuc2xpZGVzW3czY19zbGlkeS5zbGlkZV9udW1iZXJdOwoKICAgIGZvciAoOzspCiAgICB7CiAgICAgIG5vZGUgPSB3M2Nfc2xpZHkucHJldmlvdXNfbm9kZShzbGlkZSwgbm9kZSk7CgogICAgICBpZiAobm9kZSA9PSBudWxsIHx8IG5vZGUucGFyZW50Tm9kZSA9PSBudWxsKQogICAgICAgIGJyZWFrOwoKICAgICAgaWYgKG5vZGUubm9kZVR5cGUgPT0gMSkKICAgICAgewogICAgICAgIGlmIChub2RlLm5vZGVOYW1lID09IGJyKQogICAgICAgICAgY29udGludWU7CgogICAgICAgIGlmICh3M2Nfc2xpZHkuaGFzX2NsYXNzKG5vZGUsICJpbmNyZW1lbnRhbCIpCiAgICAgICAgICAgICAmJiB3M2Nfc2xpZHkub2theV9mb3JfaW5jcmVtZW50YWwobm9kZS5ub2RlTmFtZSkpCiAgICAgICAgICByZXR1cm4gbm9kZTsKCiAgICAgICAgaWYgKHczY19zbGlkeS5oYXNfY2xhc3Mobm9kZS5wYXJlbnROb2RlLCAiaW5jcmVtZW50YWwiKQogICAgICAgICAgICAgJiYgIXczY19zbGlkeS5oYXNfY2xhc3Mobm9kZSwgIm5vbi1pbmNyZW1lbnRhbCIpKQogICAgICAgICAgcmV0dXJuIG5vZGU7CiAgICAgIH0KICAgIH0KCiAgICByZXR1cm4gbm9kZTsKICB9LAoKICAvLyBzZXQgdmlzaWJpbGl0eSBmb3IgYWxsIGVsZW1lbnRzIG9uIGN1cnJlbnQgc2xpZGUgd2l0aAogIC8vIGEgcGFyZW50IGVsZW1lbnQgd2l0aCBhdHRyaWJ1dGUgY2xhc3M9ImluY3JlbWVudGFsIgogIHNldF92aXNpYmlsaXR5X2FsbF9pbmNyZW1lbnRhbDogZnVuY3Rpb24gKHZhbHVlKSB7CiAgICB2YXIgbm9kZSA9IHRoaXMubmV4dF9pbmNyZW1lbnRhbF9pdGVtKG51bGwpOwoKICAgIGlmICh2YWx1ZSA9PSAiaGlkZGVuIikKICAgIHsKICAgICAgd2hpbGUgKG5vZGUpCiAgICAgIHsKICAgICAgICB3M2Nfc2xpZHkuYWRkX2NsYXNzKG5vZGUsICJpbnZpc2libGUiKTsKICAgICAgICBub2RlID0gdzNjX3NsaWR5Lm5leHRfaW5jcmVtZW50YWxfaXRlbShub2RlKTsKICAgICAgfQogICAgfQogICAgZWxzZSAvLyB2YWx1ZSA9PSAidmlzaWJsZSIKICAgIHsKICAgICAgd2hpbGUgKG5vZGUpCiAgICAgIHsKICAgICAgICB3M2Nfc2xpZHkucmVtb3ZlX2NsYXNzKG5vZGUsICJpbnZpc2libGUiKTsKICAgICAgICBub2RlID0gdzNjX3NsaWR5Lm5leHRfaW5jcmVtZW50YWxfaXRlbShub2RlKTsKICAgICAgfQogICAgfQogIH0sCgogIC8vIHJldmVhbCB0aGUgbmV4dCBoaWRkZW4gaXRlbSBvbiB0aGUgc2xpZGUKICAvLyBub2RlIGlzIG51bGwgb3IgdGhlIG5vZGUgdGhhdCB3YXMgbGFzdCByZXZlYWxlZAogIHJldmVhbF9uZXh0X2l0ZW06IGZ1bmN0aW9uIChub2RlKSB7CiAgICBub2RlID0gdzNjX3NsaWR5Lm5leHRfaW5jcmVtZW50YWxfaXRlbShub2RlKTsKCiAgICBpZiAobm9kZSAmJiBub2RlLm5vZGVUeXBlID09IDEpICAvLyBhbiBlbGVtZW50CiAgICAgIHczY19zbGlkeS5yZW1vdmVfY2xhc3Mobm9kZSwgImludmlzaWJsZSIpOwoKICAgIHJldHVybiBub2RlOwogIH0sCgogIC8vIGV4YWN0IGludmVyc2Ugb2YgcmV2ZWFsTmV4dEl0ZW0obm9kZSkKICBoaWRlX3ByZXZpb3VzX2l0ZW06IGZ1bmN0aW9uIChub2RlKSB7CiAgICBpZiAobm9kZSAmJiBub2RlLm5vZGVUeXBlID09IDEpICAvLyBhbiBlbGVtZW50CiAgICAgIHczY19zbGlkeS5hZGRfY2xhc3Mobm9kZSwgImludmlzaWJsZSIpOwoKICAgIHJldHVybiB0aGlzLnByZXZpb3VzX2luY3JlbWVudGFsX2l0ZW0obm9kZSk7CiAgfSwKCiAgLy8gbGVmdCB0byByaWdodCB0cmF2ZXJzYWwgb2Ygcm9vdCdzIGNvbnRlbnQKICBuZXh0X25vZGU6IGZ1bmN0aW9uIChyb290LCBub2RlKSB7CiAgICBpZiAobm9kZSA9PSBudWxsKQogICAgICByZXR1cm4gcm9vdC5maXJzdENoaWxkOwoKICAgIGlmIChub2RlLmZpcnN0Q2hpbGQpCiAgICAgIHJldHVybiBub2RlLmZpcnN0Q2hpbGQ7CgogICAgaWYgKG5vZGUubmV4dFNpYmxpbmcpCiAgICAgIHJldHVybiBub2RlLm5leHRTaWJsaW5nOwoKICAgIGZvciAoOzspCiAgICB7CiAgICAgIG5vZGUgPSBub2RlLnBhcmVudE5vZGU7CgogICAgICBpZiAoIW5vZGUgfHwgbm9kZSA9PSByb290KQogICAgICAgIGJyZWFrOwoKICAgICAgaWYgKG5vZGUgJiYgbm9kZS5uZXh0U2libGluZykKICAgICAgICByZXR1cm4gbm9kZS5uZXh0U2libGluZzsKICAgIH0KCiAgICByZXR1cm4gbnVsbDsKICB9LAoKICAvLyByaWdodCB0byBsZWZ0IHRyYXZlcnNhbCBvZiByb290J3MgY29udGVudAogIHByZXZpb3VzX25vZGU6IGZ1bmN0aW9uIChyb290LCBub2RlKSB7CiAgICBpZiAobm9kZSA9PSBudWxsKQogICAgewogICAgICBub2RlID0gcm9vdC5sYXN0Q2hpbGQ7CgogICAgICBpZiAobm9kZSkKICAgICAgewogICAgICAgIHdoaWxlIChub2RlLmxhc3RDaGlsZCkKICAgICAgICAgIG5vZGUgPSBub2RlLmxhc3RDaGlsZDsKICAgICAgfQoKICAgICAgcmV0dXJuIG5vZGU7CiAgICB9CgogICAgaWYgKG5vZGUucHJldmlvdXNTaWJsaW5nKQogICAgewogICAgICBub2RlID0gbm9kZS5wcmV2aW91c1NpYmxpbmc7CgogICAgICB3aGlsZSAobm9kZS5sYXN0Q2hpbGQpCiAgICAgICAgbm9kZSA9IG5vZGUubGFzdENoaWxkOwoKICAgICAgcmV0dXJuIG5vZGU7CiAgICB9CgogICAgaWYgKG5vZGUucGFyZW50Tm9kZSAhPSByb290KQogICAgICByZXR1cm4gbm9kZS5wYXJlbnROb2RlOwoKICAgIHJldHVybiBudWxsOwogIH0sCgogIHByZXZpb3VzX3NpYmxpbmdfZWxlbWVudDogZnVuY3Rpb24gKGVsKSB7CiAgICBlbCA9IGVsLnByZXZpb3VzU2libGluZzsKCiAgICB3aGlsZSAoZWwgJiYgZWwubm9kZVR5cGUgIT0gMSkKICAgICAgZWwgPSBlbC5wcmV2aW91c1NpYmxpbmc7CgogICAgcmV0dXJuIGVsOwogIH0sCgogIG5leHRfc2libGluZ19lbGVtZW50OiBmdW5jdGlvbiAoZWwpIHsKICAgIGVsID0gZWwubmV4dFNpYmxpbmc7CgogICAgd2hpbGUgKGVsICYmIGVsLm5vZGVUeXBlICE9IDEpCiAgICAgIGVsID0gZWwubmV4dFNpYmxpbmc7CgogICAgcmV0dXJuIGVsOwogIH0sCgogIGZpcnN0X2NoaWxkX2VsZW1lbnQ6IGZ1bmN0aW9uIChlbCkgewogICAgdmFyIG5vZGU7CgogICAgZm9yIChub2RlID0gZWwuZmlyc3RDaGlsZDsgbm9kZTsgbm9kZSA9IG5vZGUubmV4dFNpYmxpbmcpCiAgICB7CiAgICAgIGlmIChub2RlLm5vZGVUeXBlID09IDEpCiAgICAgICAgYnJlYWs7CiAgICB9CgogICAgcmV0dXJuIG5vZGU7CiAgfSwKCiAgZmlyc3RfdGFnOiBmdW5jdGlvbiAoZWxlbWVudCwgdGFnKSB7CiAgICB2YXIgbm9kZTsKCiAgICBpZiAoIXRoaXMuaXNfeGh0bWwpCiAgICAgIHRhZyA9IHRhZy50b1VwcGVyQ2FzZSgpOwoKICAgIGZvciAobm9kZSA9IGVsZW1lbnQuZmlyc3RDaGlsZDsgbm9kZTsgbm9kZSA9IG5vZGUubmV4dFNpYmxpbmcpCiAgICB7CiAgICAgIGlmIChub2RlLm5vZGVUeXBlID09IDEgJiYgbm9kZS5ub2RlTmFtZSA9PSB0YWcpCiAgICAgICAgYnJlYWs7CiAgICB9CgogICAgcmV0dXJuIG5vZGU7CiAgfSwKCiAgaGlkZV9zZWxlY3Rpb246IGZ1bmN0aW9uICgpIHsKICAgIGlmICh3aW5kb3cuZ2V0U2VsZWN0aW9uKSAvLyBGaXJlZm94LCBDaHJvbWl1bSwgU2FmYXJpLCBPcGVyYQogICAgewogICAgICB2YXIgc2VsZWN0aW9uID0gd2luZG93LmdldFNlbGVjdGlvbigpOwoKICAgICAgaWYgKHNlbGVjdGlvbi5yYW5nZUNvdW50ID4gMCkKICAgICAgewogICAgICAgIHZhciByYW5nZSA9IHNlbGVjdGlvbi5nZXRSYW5nZUF0KDApOwogICAgICAgIHJhbmdlLmNvbGxhcHNlIChmYWxzZSk7CiAgICAgIH0KICAgIH0KICAgIGVsc2UgLy8gSW50ZXJuZXQgRXhwbG9yZXIKICAgIHsKICAgICAgdmFyIHRleHRSYW5nZSA9IGRvY3VtZW50LnNlbGVjdGlvbi5jcmVhdGVSYW5nZSAoKTsKICAgICAgdGV4dFJhbmdlLmNvbGxhcHNlIChmYWxzZSk7CiAgICB9CiAgfSwKCiAgZ2V0X3NlbGVjdGVkX3RleHQ6IGZ1bmN0aW9uICgpIHsKICAgIHRyeQogICAgewogICAgICBpZiAod2luZG93LmdldFNlbGVjdGlvbikKICAgICAgICByZXR1cm4gd2luZG93LmdldFNlbGVjdGlvbigpLnRvU3RyaW5nKCk7CgogICAgICBpZiAoZG9jdW1lbnQuZ2V0U2VsZWN0aW9uKQogICAgICAgIHJldHVybiBkb2N1bWVudC5nZXRTZWxlY3Rpb24oKS50b1N0cmluZygpOwoKICAgICAgaWYgKGRvY3VtZW50LnNlbGVjdGlvbikKICAgICAgICByZXR1cm4gZG9jdW1lbnQuc2VsZWN0aW9uLmNyZWF0ZVJhbmdlKCkudGV4dDsKICAgIH0KICAgIGNhdGNoIChlKQogICAgewogICAgfQoKICAgIHJldHVybiAiIjsKICB9LAoKICAvLyBtYWtlIG5vdGUgb2YgbGVuZ3RoIG9mIHNlbGVjdGVkIHRleHQKICAvLyBhcyB0aGlzIGV2YWx1YXRlcyB0byB6ZXJvIGluIGNsaWNrIGV2ZW50CiAgbW91c2VfYnV0dG9uX3VwOiBmdW5jdGlvbiAoZSkgewogICAgdzNjX3NsaWR5LnNlbGVjdGVkX3RleHRfbGVuID0gdzNjX3NsaWR5LmdldF9zZWxlY3RlZF90ZXh0KCkubGVuZ3RoOwogIH0sCgogIG1vdXNlX2J1dHRvbl9kb3duOiBmdW5jdGlvbiAoZSkgewogICAgdzNjX3NsaWR5LnNlbGVjdGVkX3RleHRfbGVuID0gdzNjX3NsaWR5LmdldF9zZWxlY3RlZF90ZXh0KCkubGVuZ3RoOwogICAgdzNjX3NsaWR5Lm1vdXNlX3ggPSBlLmNsaWVudFg7CiAgICB3M2Nfc2xpZHkubW91c2VfeSA9IGUuY2xpZW50WTsKICB9LAoKICAvLyByaWdodCBtb3VzZSBidXR0b24gY2xpY2sgaXMgcmVzZXJ2ZWQgZm9yIGNvbnRleHQgbWVudXMKICAvLyBpdCBpcyBtb3JlIHJlbGlhYmxlIHRvIGRldGVjdCByaWdodGNsaWNrIHRoYW4gbGVmdGNsaWNrCiAgbW91c2VfYnV0dG9uX2NsaWNrOiBmdW5jdGlvbiAoZSkgewogICAgaWYgKCFlKQogICAgICB2YXIgZSA9IHdpbmRvdy5ldmVudDsKCiAgICBpZiAoTWF0aC5hYnMoZS5jbGllbnRYIC13M2Nfc2xpZHkubW91c2VfeCkgKwogICAgICAgIE1hdGguYWJzKGUuY2xpZW50WSAtdzNjX3NsaWR5Lm1vdXNlX3kpID4gMTApCiAgICAgIHJldHVybiB0cnVlOwoKICAgIGlmICh3M2Nfc2xpZHkuc2VsZWN0ZWRfdGV4dF9sZW4gPiAwKQogICAgICByZXR1cm4gdHJ1ZTsKCiAgICB2YXIgcmlnaHRjbGljayA9IGZhbHNlOwogICAgdmFyIGxlZnRjbGljayA9IGZhbHNlOwogICAgdmFyIG1pZGRsZWNsaWNrID0gZmFsc2U7CiAgICB2YXIgdGFyZ2V0OwoKICAgIGlmICghZSkKICAgICAgdmFyIGUgPSB3aW5kb3cuZXZlbnQ7CgogICAgaWYgKGUudGFyZ2V0KQogICAgICB0YXJnZXQgPSBlLnRhcmdldDsKICAgIGVsc2UgaWYgKGUuc3JjRWxlbWVudCkKICAgICAgdGFyZ2V0ID0gZS5zcmNFbGVtZW50OwoKICAgIC8vIHdvcmsgYXJvdW5kIFNhZmFyaSBidWcKICAgIGlmICh0YXJnZXQubm9kZVR5cGUgPT0gMykKICAgICAgdGFyZ2V0ID0gdGFyZ2V0LnBhcmVudE5vZGU7CgogICAgaWYgKGUud2hpY2gpIC8vIGFsbCBicm93c2VycyBleGNlcHQgSUUKICAgIHsKICAgICAgbGVmdGNsaWNrID0gKGUud2hpY2ggPT0gMSk7CiAgICAgIG1pZGRsZWNsaWNrID0gKGUud2hpY2ggPT0gMik7CiAgICAgIHJpZ2h0Y2xpY2sgPSAoZS53aGljaCA9PSAzKTsKICAgIH0KICAgIGVsc2UgaWYgKGUuYnV0dG9uKQogICAgewogICAgICAvLyBLb25xdWVyb3IgZ2l2ZXMgMSBmb3IgbGVmdCwgNCBmb3IgbWlkZGxlCiAgICAgIC8vIElFNiBnaXZlcyAwIGZvciBsZWZ0IGFuZCBub3QgMSBhcyBJIGV4cGVjdGVkCgogICAgICBpZiAoZS5idXR0b24gPT0gNCkKICAgICAgICBtaWRkbGVjbGljayA9IHRydWU7CgogICAgICAvLyBhbGwgYnJvd3NlcnMgYWdyZWUgb24gMiBmb3IgcmlnaHQgYnV0dG9uCiAgICAgIHJpZ2h0Y2xpY2sgPSAoZS5idXR0b24gPT0gMik7CiAgICB9CiAgICBlbHNlCiAgICAgIGxlZnRjbGljayA9IHRydWU7CgogICAgaWYgKHczY19zbGlkeS5zZWxlY3RlZF90ZXh0X2xlbiA+IDApCiAgICB7CiAgICAgIHczY19zbGlkeS5zdG9wX3Byb3BhZ2F0aW9uKGUpOwogICAgICBlLmNhbmNlbCA9IHRydWU7CiAgICAgIGUucmV0dXJuVmFsdWUgPSBmYWxzZTsKICAgICAgcmV0dXJuIGZhbHNlOwogICAgfQoKICAgIC8vIGRpc21pc3MgdGFibGUgb2YgY29udGVudHMKICAgIHczY19zbGlkeS5oaWRlX3RhYmxlX29mX2NvbnRlbnRzKGZhbHNlKTsKCiAgICAvLyBjaGVjayBpZiB0YXJnZXQgaXMgc29tZXRoaW5nIHRoYXQgcHJvYmFibHkgd2FudCdzIGNsaWNrcwogICAgLy8gZS5nLiBhLCBlbWJlZCwgb2JqZWN0LCBpbnB1dCwgdGV4dGFyZWEsIHNlbGVjdCwgb3B0aW9uCiAgICB2YXIgdGFnID0gdGFyZ2V0Lm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7CgogICAgaWYgKHczY19zbGlkeS5tb3VzZV9jbGlja19lbmFibGVkICYmIGxlZnRjbGljayAmJgogICAgICAgICF3M2Nfc2xpZHkuc3BlY2lhbF9lbGVtZW50KHRhcmdldCkgJiYKICAgICAgICAhdGFyZ2V0Lm9uY2xpY2spCiAgICB7CiAgICAgIHczY19zbGlkeS5uZXh0X3NsaWRlKHRydWUpOwogICAgICB3M2Nfc2xpZHkuc3RvcF9wcm9wYWdhdGlvbihlKTsKICAgICAgZS5jYW5jZWwgPSB0cnVlOwogICAgICBlLnJldHVyblZhbHVlID0gZmFsc2U7CiAgICAgIHJldHVybiBmYWxzZTsKICAgIH0KCiAgICByZXR1cm4gdHJ1ZTsKICB9LAoKICBzcGVjaWFsX2VsZW1lbnQ6IGZ1bmN0aW9uIChlbGVtZW50KSB7CiAgICBpZiAodGhpcy5oYXNfY2xhc3MoZWxlbWVudCwgIm5vbi1pbnRlcmFjdGl2ZSIpKQogICAgICByZXR1cm4gZmFsc2U7CgogICAgdmFyIHRhZyA9IGVsZW1lbnQubm9kZU5hbWUudG9Mb3dlckNhc2UoKTsKCiAgICByZXR1cm4gZWxlbWVudC5vbmtleWRvd24gfHwKICAgICAgZWxlbWVudC5vbmNsaWNrIHx8CiAgICAgIHRhZyA9PSAiYSIgfHwKICAgICAgdGFnID09ICJlbWJlZCIgfHwKICAgICAgdGFnID09ICJvYmplY3QiIHx8CiAgICAgIHRhZyA9PSAidmlkZW8iIHx8CiAgICAgIHRhZyA9PSAiYXVkaW8iIHx8CiAgICAgIHRhZyA9PSAic3ZnIiB8fAogICAgICB0YWcgPT0gImNhbnZhcyIgfHwKICAgICAgdGFnID09ICJpbnB1dCIgfHwKICAgICAgdGFnID09ICJ0ZXh0YXJlYSIgfHwKICAgICAgdGFnID09ICJzZWxlY3QiIHx8CiAgICAgIHRhZyA9PSAib3B0aW9uIjsKICB9LAoKICBzbGlkeV9jaHJvbWU6IGZ1bmN0aW9uIChlbCkgewogICAgd2hpbGUgKGVsKQogICAgewogICAgICBpZiAoZWwgPT0gdzNjX3NsaWR5LnRvYyB8fAogICAgICAgICAgZWwgPT0gdzNjX3NsaWR5LnRvb2xiYXIgfHwKICAgICAgICAgIHczY19zbGlkeS5oYXNfY2xhc3MoZWwsICJvdXRsaW5lIikpCiAgICAgICAgcmV0dXJuIHRydWU7CgogICAgICBlbCA9IGVsLnBhcmVudE5vZGU7CiAgICB9CgogICAgcmV0dXJuIGZhbHNlOwogIH0sCgogIGdldF9rZXk6IGZ1bmN0aW9uIChlKQogIHsKICAgIHZhciBrZXk7CgogICAgLy8ga2x1ZGdlIGFyb3VuZCBOUy9JRSBkaWZmZXJlbmNlcyAKICAgIGlmICh0eXBlb2Ygd2luZG93LmV2ZW50ICE9ICJ1bmRlZmluZWQiKQogICAgICBrZXkgPSB3aW5kb3cuZXZlbnQua2V5Q29kZTsKICAgIGVsc2UgaWYgKGUud2hpY2gpCiAgICAgIGtleSA9IGUud2hpY2g7CgogICAgcmV0dXJuIGtleTsKICB9LAoKICBnZXRfdGFyZ2V0OiBmdW5jdGlvbiAoZSkgewogICAgdmFyIHRhcmdldDsKCiAgICBpZiAoIWUpCiAgICAgIGUgPSB3aW5kb3cuZXZlbnQ7CgogICAgaWYgKGUudGFyZ2V0KQogICAgICB0YXJnZXQgPSBlLnRhcmdldDsKICAgIGVsc2UgaWYgKGUuc3JjRWxlbWVudCkKICAgICAgdGFyZ2V0ID0gZS5zcmNFbGVtZW50OwoKICAgIGlmICh0YXJnZXQubm9kZVR5cGUgIT0gMSkKICAgICAgdGFyZ2V0ID0gdGFyZ2V0LnBhcmVudE5vZGU7CgogICAgcmV0dXJuIHRhcmdldDsKICB9LAoKICAvLyBkb2VzIGRpc3BsYXkgcHJvcGVydHkgcHJvdmlkZSBjb3JyZWN0IGRlZmF1bHRzPwogIGlzX2Jsb2NrOiBmdW5jdGlvbiAoZWxlbSkgewogICAgdmFyIHRhZyA9IGVsZW0ubm9kZU5hbWUudG9Mb3dlckNhc2UoKTsKCiAgICByZXR1cm4gdGFnID09ICJvbCIgfHwgdGFnID09ICJ1bCIgfHwgdGFnID09ICJwIiB8fCB0YWcgPT0gImRsIiB8fAogICAgICAgICAgIHRhZyA9PSAibGkiIHx8IHRhZyA9PSAidGFibGUiIHx8IHRhZyA9PSAicHJlIiB8fAogICAgICAgICAgIHRhZyA9PSAiaDEiIHx8IHRhZyA9PSAiaDIiIHx8IHRhZyA9PSAiaDMiIHx8CiAgICAgICAgICAgdGFnID09ICJoNCIgfHwgdGFnID09ICJoNSIgfHwgdGFnID09ICJoNiIgfHwKICAgICAgICAgICB0YWcgPT0gImJsb2NrcXVvdGUiIHx8IHRhZyA9PSAiYWRkcmVzcyI7IAogIH0sCgogIGFkZF9saXN0ZW5lcjogZnVuY3Rpb24gKGVsZW1lbnQsIGV2ZW50LCBoYW5kbGVyKSB7CiAgICBpZiAod2luZG93LmFkZEV2ZW50TGlzdGVuZXIpCiAgICAgIGVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcihldmVudCwgaGFuZGxlciwgZmFsc2UpOwogICAgZWxzZQogICAgICBlbGVtZW50LmF0dGFjaEV2ZW50KCJvbiIrZXZlbnQsIGhhbmRsZXIpOwogIH0sCgogIC8vIHVzZWQgdG8gcHJldmVudCBldmVudCBwcm9wYWdhdGlvbiBmcm9tIGZpZWxkIGNvbnRyb2xzCiAgc3RvcF9wcm9wYWdhdGlvbjogZnVuY3Rpb24gKGV2ZW50KSB7CiAgICBldmVudCA9IGV2ZW50ID8gZXZlbnQgOiB3aW5kb3cuZXZlbnQ7CiAgICBldmVudC5jYW5jZWxCdWJibGUgPSB0cnVlOyAgLy8gZm9yIElFCgogICAgaWYgKGV2ZW50LnN0b3BQcm9wYWdhdGlvbikKICAgICAgZXZlbnQuc3RvcFByb3BhZ2F0aW9uKCk7CgogICAgcmV0dXJuIHRydWU7CiAgfSwKCiAgY2FuY2VsOiBmdW5jdGlvbiAoZXZlbnQpIHsKICAgIGlmIChldmVudCkKICAgIHsKICAgICAgIGV2ZW50LmNhbmNlbCA9IHRydWU7CiAgICAgICBldmVudC5yZXR1cm5WYWx1ZSA9IGZhbHNlOwoKICAgICAgaWYgKGV2ZW50LnByZXZlbnREZWZhdWx0KQogICAgICAgIGV2ZW50LnByZXZlbnREZWZhdWx0KCk7CiAgICB9CgogICAgdzNjX3NsaWR5LmtleV93YW50ZWQgPSBmYWxzZTsKICAgIHJldHVybiBmYWxzZTsKICB9LAoKLy8gZm9yIGVhY2ggbGFuZ3VhZ2UgZGVmaW5lIGFuIGFzc29jaWF0aXZlIGFycmF5Ci8vIGFuZCBhbHNvIHRoZSBoZWxwIHRleHQgd2hpY2ggaXMgbG9uZ2VyCgogIHN0cmluZ3NfZXM6IHsKICAgICJzbGlkZSI6InDDoWcuIiwKICAgICJoZWxwPyI6IkF5dWRhIiwKICAgICJjb250ZW50cz8iOiLDjW5kaWNlIiwKICAgICJ0YWJsZSBvZiBjb250ZW50cyI6InRhYmxhIGRlIGNvbnRlbmlkb3MiLAogICAgIlRhYmxlIG9mIENvbnRlbnRzIjoiVGFibGEgZGUgQ29udGVuaWRvcyIsCiAgICAicmVzdGFydCBwcmVzZW50YXRpb24iOiJSZWluaWNpYXIgcHJlc2VudGFjacOzbiIsCiAgICAicmVzdGFydD8iOiJJbmljaW8iCiAgfSwKICBoZWxwX2VzOgogICAgIlV0aWxpY2UgZWwgcmF0w7NuLCBiYXJyYSBlc3BhY2lhZG9yYSwgdGVjbGFzIEl6ZGEvRGNoYSwgIiArCiAgICAibyBSZSBww6FnIHkgQXYgcMOhZy4gVXNlIFMgeSBCIHBhcmEgY2FtYmlhciBlbCB0YW1hw7FvIGRlIGZ1ZW50ZS4iLAoKICBzdHJpbmdzX2NhOiB7CiAgICAic2xpZGUiOiJww6BnLi4iLAogICAgImhlbHA/IjoiQWp1ZGEiLAogICAgImNvbnRlbnRzPyI6IsONbmRleCIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiJ0YXVsYSBkZSBjb250aW5ndXRzIiwKICAgICJUYWJsZSBvZiBDb250ZW50cyI6IlRhdWxhIGRlIENvbnRpbmd1dHMiLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoiUmVpbmljaWFyIHByZXNlbnRhY2nDsyIsCiAgICAicmVzdGFydD8iOiJJbmljaSIKICB9LAogIGhlbHBfY2E6CiAgICAiVXRpbGl0emkgZWwgcmF0b2zDrSwgYmFycmEgZXNwYWlhZG9yYSwgdGVjbGVzIEVzcS4vRHRhLiAiICsKICAgICJvIFJlIHDDoGcgeSBBdiBww6BnLiBVc2kgUyBpIEIgcGVyIGNhbnZpYXIgZ3JhbmTDoHJpYSBkZSBmb250LiIsCgogIHN0cmluZ3NfY3M6IHsKICAgICJzbGlkZSI6InNuw61tZWsiLAogICAgImhlbHA/IjoibsOhcG92xJtkYSIsCiAgICAiY29udGVudHM/Ijoib2JzYWgiLAogICAgInRhYmxlIG9mIGNvbnRlbnRzIjoib2JzYWggcHJlemVudGFjZSIsCiAgICAiVGFibGUgb2YgQ29udGVudHMiOiJPYnNhaCBwcmV6ZW50YWNlIiwKICAgICJyZXN0YXJ0IHByZXNlbnRhdGlvbiI6Inpub3Z1IHNwdXN0aXQgcHJlemVudGFjaSIsCiAgICAicmVzdGFydD8iOiJyZXN0YXJ0IgogIH0sCiAgaGVscF9jczoKICAgICJQcmV6ZW50YWNpIG3Fr8W+ZXRlIHByb2Now6F6ZXQgcG9tb2PDrSBrbGlrbnV0w60gbXnFoWksIG1lemVybsOta3UsICIgKwogICAgIsWhaXBlayB2bGV2byBhIHZwcmF2byBuZWJvIGtsw6F2ZXMgUGFnZVVwIGEgUGFnZURvd24uIFDDrXNtbyBzZSAiICsKICAgICJkw6EgenbEm3TFoWl0IGEgem1lbsWhaXQgcG9tb2PDrSBrbMOhdmVzIEIgYSBTLiIsCgogIHN0cmluZ3Nfbmw6IHsKICAgICJzbGlkZSI6InBhZ2luYSIsCiAgICAiaGVscD8iOiJIZWxwPyIsCiAgICAiY29udGVudHM/IjoiSW5ob3VkPyIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiJpbmhvdWRzb3BnYXZlIiwKICAgICJUYWJsZSBvZiBDb250ZW50cyI6IkluaG91ZHNvcGdhdmUiLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoiaGVyc3RhcnQgcHJlc2VudGF0aWUiLAogICAgInJlc3RhcnQ/IjoiSGVyc3RhcnQ/IgogIH0sCiAgaGVscF9ubDoKICAgICAiTmF2aWdlZXIgZC5tLnYuIGhldCBtdWlzLCBzcGF0aWViYXIsIExpbmtzL1JlY2h0cyB0b2V0c2VuLCAiICsKICAgICAib2YgUGdVcCBlbiBQZ0RuLiBHZWJydWlrIFMgZW4gQiBvbSBkZSBrYXJha3Rlcmdyb290dGUgdGUgdmVyYW5kZXJlbi4iLAoKICBzdHJpbmdzX2RlOiB7CiAgICAic2xpZGUiOiJTZWl0ZSIsCiAgICAiaGVscD8iOiJIaWxmZSIsCiAgICAiY29udGVudHM/Ijoiw5xiZXJzaWNodCIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiJJbmhhbHRzdmVyemVpY2huaXMiLAogICAgIlRhYmxlIG9mIENvbnRlbnRzIjoiSW5oYWx0c3ZlcnplaWNobmlzIiwKICAgICJyZXN0YXJ0IHByZXNlbnRhdGlvbiI6IlByw6RzZW50YXRpb24gbmV1IHN0YXJ0ZW4iLAogICAgInJlc3RhcnQ/IjoiTmV1c3RhcnQiCiAgfSwKICBoZWxwX2RlOgogICAgIkJlbnV0emVuIFNpZSBkaWUgTWF1cywgTGVlcnNjaGxhZywgZGllIEN1cnNvcnRhc3RlbiBsaW5rcy9yZWNodHMgb2RlciAiICsKICAgICJQYWdlIHVwL1BhZ2UgRG93biB6dW0gV2VjaHNlbG4gZGVyIFNlaXRlbiB1bmQgUyB1bmQgQiBmw7xyIGRpZSBTY2hyaWZ0Z3LDtnNzZS4iLAoKICBzdHJpbmdzX3BsOiB7CiAgICAic2xpZGUiOiJzbGFqZCIsCiAgICAiaGVscD8iOiJwb21vYz8iLAogICAgImNvbnRlbnRzPyI6InNwaXMgdHJlxZtjaT8iLAogICAgInRhYmxlIG9mIGNvbnRlbnRzIjoic3BpcyB0cmXFm2NpIiwKICAgICJUYWJsZSBvZiBDb250ZW50cyI6IlNwaXMgVHJlxZtjaSIsCiAgICAicmVzdGFydCBwcmVzZW50YXRpb24iOiJSZXN0YXJ0dWogcHJlemVudGFjasSZIiwKICAgICJyZXN0YXJ0PyI6InJlc3RhcnQ/IgogIH0sCiAgaGVscF9wbDoKICAgICJabWllbmlhaiBzbGFqZHkga2xpa2FqxIVjIG15c3rEhSwgbmFjaXNrYWrEhWMgc3BhY2rEmSwgc3RyemHFgmtpIGxld28vcHJhd28iICsKICAgICJsdWIgUGdVcCAvIFBnRG4uIFXFvHlqIGtsYXdpc3p5IFMgaSBCLCBhYnkgem1pZW5pxIcgcm96bWlhciBjemN6aW9ua2kuIiwKCiAgc3RyaW5nc19mcjogewogICAgInNsaWRlIjoicGFnZSIsCiAgICAiaGVscD8iOiJBaWRlIiwKICAgICJjb250ZW50cz8iOiJJbmRleCIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiJ0YWJsZSBkZXMgbWF0acOocmVzIiwKICAgICJUYWJsZSBvZiBDb250ZW50cyI6IlRhYmxlIGRlcyBtYXRpw6hyZXMiLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoiUmVjb21tZW5jZXIgbCdleHBvc8OpIiwKICAgICJyZXN0YXJ0PyI6IkTDqWJ1dCIKICB9LAogIGhlbHBfZnI6CiAgICAiTmF2aWd1ZXogYXZlYyBsYSBzb3VyaXMsIGxhIGJhcnJlIGQnZXNwYWNlLCBsZXMgZmzDqGNoZXMgIiArCiAgICAiZ2F1Y2hlL2Ryb2l0ZSBvdSBsZXMgdG91Y2hlcyBQZyBVcCwgUGcgRG4uIFV0aWxpc2V6ICIgKwogICAgImxlcyB0b3VjaGVzIFMgZXQgQiBwb3VyIG1vZGlmaWVyIGxhIHRhaWxsZSBkZSBsYSBwb2xpY2UuIiwKCiAgc3RyaW5nc19odTogewogICAgInNsaWRlIjoib2xkYWwiLAogICAgImhlbHA/Ijoic2Vnw610c8OpZyIsCiAgICAiY29udGVudHM/IjoidGFydGFsb20iLAogICAgInRhYmxlIG9mIGNvbnRlbnRzIjoidGFydGFsb21qZWd5esOpayIsCiAgICAiVGFibGUgb2YgQ29udGVudHMiOiJUYXJ0YWxvbWplZ3l6w6lrIiwKICAgICJyZXN0YXJ0IHByZXNlbnRhdGlvbiI6ImJlbXV0YXTDsyDDumpyYWluZMOtdMOhc2EiLAogICAgInJlc3RhcnQ/Ijoiw7pqcmFpbmTDrXTDoXMiCiAgfSwKICBoZWxwX2h1OgogICAgIkF6IG9sZGFsYWsga8O2enRpIGzDqXBrZWTDqXNoZXoga2F0dGludHNvbiBheiBlZ8OpcnJlbCwgdmFneSAiICsKICAgICJoYXN6bsOhbGphIGEgc3rDs2vDtnosIGEgYmFsLCB2YWd5IGEgam9iYiBuecOtbCwgaWxsZXR2ZSBhIFBhZ2UgRG93biwgIiArCiAgICAiUGFnZSBVcCBiaWxsZW50ecWxa2V0LiBBeiBTIMOpcyBhIEIgYmlsbGVudHnFsWtrZWwgdsOhbHRvenRhdGhhdGphICIgKwogICAgImEgc3rDtnZlZyBtw6lyZXTDqXQuIiwKCiAgc3RyaW5nc19pdDogewogICAgInNsaWRlIjoicGFnLiIsCiAgICAiaGVscD8iOiJBaXV0byIsCiAgICAiY29udGVudHM/IjoiSW5kaWNlIiwKICAgICJ0YWJsZSBvZiBjb250ZW50cyI6ImluZGljZSIsCiAgICAiVGFibGUgb2YgQ29udGVudHMiOiJJbmRpY2UiLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoiUmljb21pbmNpYXJlIGxhIHByZXNlbnRhemlvbmUiLAogICAgInJlc3RhcnQ/IjoiSW5pemlvIgogIH0sCiAgaGVscF9pdDoKICAgICJOYXZpZ2FyZSBjb24gbW91c2UsIGJhcnJhIHNwYXppbywgZnJlY2NlIHNpbmlzdHJhL2Rlc3RyYSBvICIgKwogICAgIlBnVXAgZSBQZ0RuLiBVc2FyZSBTIGUgQiBwZXIgY2FtYmlhcmUgbGEgZGltZW5zaW9uZSBkZWkgY2FyYXR0ZXJpLiIsCgogIHN0cmluZ3NfZWw6IHsKICAgICJzbGlkZSI6Is+DzrXOu86vzrTOsSIsCiAgICAiaGVscD8iOiLOss6/zq7OuM61zrnOsTsiLAogICAgImNvbnRlbnRzPyI6Is+AzrXPgc65zrXPh8+MzrzOtc69zrE7IiwKICAgICJ0YWJsZSBvZiBjb250ZW50cyI6Is+Azq/Ovc6xzrrOsc+CIM+AzrXPgc65zrXPh86/zrzOrc69z4nOvSIsCiAgICAiVGFibGUgb2YgQ29udGVudHMiOiLOoM6vzr3Osc66zrHPgiDOoM61z4HOuc61z4fOv868zq3Ovc+Jzr0iLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoizrXPgM6xzr3Otc66zrrOr869zrfPg863IM+AzrHPgc6/z4XPg86vzrHPg863z4IiLAogICAgInJlc3RhcnQ/IjoizrXPgM6xzr3Otc66zrrOr869zrfPg863OyIKICB9LAogIGhlbHBfZWw6CiAgICAizqDOu86/zrfOs863zrjOtc6vz4TOtSDOvM61IM+Ezr8gzrrOu86vzrogz4TOv8+FIM+Azr/Ovc+EzrnOus65zr/PjSwgz4TOvyBzcGFjZSwgz4TOsSDOss6tzrvOtyDOsc+BzrnPg8+EzrXPgc6sL860zrXOvs65zqwsICIgKwogICAgIs6uIFBhZ2UgVXAgzrrOsc65IFBhZ2UgRG93bi4gzqfPgc63z4POuc68zr/PgM6/zrnOrs+Dz4TOtSDPhM6xIM+AzrvOrs66z4TPgc6xIFMgzrrOsc65IEIgzrPOuc6xIM69zrEgzrHOu867zqzOvs61z4TOtSAiICsKICAgICLPhM6/IM68zq3Os861zrjOv8+CIM+EzrfPgiDOs8+BzrHOvM68zrHPhM6/z4POtc65z4HOrM+CLiIsCgogIHN0cmluZ3NfamE6IHsKICAgICJzbGlkZSI6IuOCueODqeOCpOODiSIsCiAgICAiaGVscD8iOiLjg5jjg6vjg5ciLAogICAgImNvbnRlbnRzPyI6IuebruasoSIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiLnm67mrKHjgpLooajnpLoiLAogICAgIlRhYmxlIG9mIENvbnRlbnRzIjoi55uu5qyhIiwKICAgICJyZXN0YXJ0IHByZXNlbnRhdGlvbiI6IuacgOWIneOBi+OCieWGjeeUnyIsCiAgICAicmVzdGFydD8iOiLmnIDliJ3jgYvjgokiCiAgfSwKICBoZWxwX2phOgogICAgICLjg57jgqbjgrnlt6bjgq/jg6rjg4Pjgq8g44O7IOOCueODmuODvOOCuSDjg7sg5bem5Y+z44Kt44O8ICIgKwogICAgICLjgb7jgZ/jga8gUGFnZSBVcCDjg7sgUGFnZSBEb3du44Gn5pON5L2c77yMIFMg44O7IELjgafjg5Xjgqnjg7Pjg4jjgrXjgqTjgrrlpInmm7QiLAoKICBzdHJpbmdzX3poOiB7CiAgICAic2xpZGUiOiLlubvnga/niYciLAogICAgImhlbHA/Ijoi5biu5YqpPyIsCiAgICAiY29udGVudHM/Ijoi5YaF5a65PyIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiLnm67lvZUiLAogICAgIlRhYmxlIG9mIENvbnRlbnRzIjoi55uu5b2VIiwKICAgICJyZXN0YXJ0IHByZXNlbnRhdGlvbiI6IumHjeaWsOWQr+WKqOWxleekuiIsCiAgICAicmVzdGFydD8iOiLph43mlrDlkK/liqg/IgogIH0sCiAgaGVscF96aDoKICAgICLnlKjpvKDmoIfngrnlh7ssIOepuuagvOadoSwg5bem5Y+z566t5aS0LCBQZyBVcCDlkowgUGcgRG4g5a+86IiqLiAiICsKICAgICLnlKggUywgQiDmlLnlj5jlrZfkvZPlpKflsI8uIiwKCiAgc3RyaW5nc19ydTogewogICAgInNsaWRlIjoi0YHQu9Cw0LnQtCIsCiAgICAiaGVscD8iOiLQv9C+0LzQvtGJ0Yw/IiwKICAgICJjb250ZW50cz8iOiLRgdC+0LTQtdGA0LbQsNC90LjQtT8iLAogICAgInRhYmxlIG9mIGNvbnRlbnRzIjoi0L7Qs9C70LDQstC70LXQvdC40LUiLAogICAgIlRhYmxlIG9mIENvbnRlbnRzIjoi0J7Qs9C70LDQstC70LXQvdC40LUiLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoi0L/QtdGA0LXQt9Cw0L/Rg9GB0YLQuNGC0Ywg0L/RgNC10LfQtdC90YLQsNGG0LjRjiIsCiAgICAicmVzdGFydD8iOiLQv9C10YDQtdC30LDQv9GD0YHQuj8iCiAgfSwKICBoZWxwX3J1OgogICAgItCf0LXRgNC10LzQtdGJ0LDQudGC0LXRgdGMINC60LvQuNC60LDRjyDQvNGL0YjQutC+0LksINC40YHQv9C+0LvRjNC30YPRjyDQutC70LDQstC40YjRgyDQv9GA0L7QsdC10LssINGB0YLRgNC10LvQutC4IiArCiAgICAi0LLQu9C10LLQvi/QstC/0YDQsNCy0L4g0LjQu9C4IFBnIFVwINC4IFBnIERuLiDQmtC70LDQstC40YjQuCBTINC4IEIg0LzQtdC90Y/RjtGCINGA0LDQt9C80LXRgCDRiNGA0LjRhNGC0LAuIiwKCiAgc3RyaW5nc19zdjogewogICAgInNsaWRlIjoic2lkYSIsCiAgICAiaGVscD8iOiJoasOkbHAiLAogICAgImNvbnRlbnRzPyI6ImlubmVow6VsbCIsCiAgICAidGFibGUgb2YgY29udGVudHMiOiJpbm5laMOlbGxzZsO2cnRlY2tuaW5nIiwKICAgICJUYWJsZSBvZiBDb250ZW50cyI6IklubmVow6VsbHNmw7ZydGVja25pbmciLAogICAgInJlc3RhcnQgcHJlc2VudGF0aW9uIjoidmlzYSBwcmVzZW50YXRpb25lbiBmcsOlbiBiw7ZyamFuIiwKICAgICJyZXN0YXJ0PyI6ImLDtnJqYSBvbSIKICB9LAogIGhlbHBfc3Y6CiAgICAiQmzDpGRkcmEgbWVkIGV0dCBrbGljayBtZWQgdsOkbnN0cmEgbXVza25hcHBlbiwgbWVsbGFuc2xhZ3N0YW5nZW50ZW4sICIgKwogICAgInbDpG5zdGVyLSBvY2ggaMO2Z2VycGlsdGFuZ2VudGVybmEgZWxsZXIgdGFuZ2VudGVybmEgUGcgVXAsIFBnIERuLiAiICsKICAgICJBbnbDpG5kIHRhbmdlbnRlcm5hIFMgb2NoIEIgZsO2ciBhdHQgw6RuZHJhIHRleHRlbnMgc3Rvcmxlay4iLAoKICBzdHJpbmdzOiB7IH0sCgogIGxvY2FsaXplOiBmdW5jdGlvbiAoc3JjKSB7CiAgICBpZiAoc3JjID09ICIiKQogICAgICByZXR1cm4gc3JjOwoKICAgICAvLyB0cnkgZnVsbCBsYW5ndWFnZSBjb2RlLCBlLmcuIGVuLVVTCiAgICAgdmFyIHMsIGxvb2t1cCA9IHczY19zbGlkeS5zdHJpbmdzW3czY19zbGlkeS5sYW5nXTsKCiAgICAgaWYgKGxvb2t1cCkKICAgICB7CiAgICAgICBzID0gbG9va3VwW3NyY107CgogICAgICAgaWYgKHMpCiAgICAgICAgcmV0dXJuIHM7CiAgICAgfQoKICAgICAvLyBzdHJpcCBjb3VudHJ5IGNvZGUgc3VmZml4LCBlLmcuCiAgICAgLy8gdHJ5IGVuIGlmIHVuZGVmaW5lZCBmb3IgZW4tVVMKICAgICB2YXIgbGcgPSB3M2Nfc2xpZHkubGFuZy5zcGxpdCgiLSIpOwoKICAgICBpZiAobGcubGVuZ3RoID4gMSkKICAgICB7CiAgICAgICBsb29rdXAgPSB3M2Nfc2xpZHkuc3RyaW5nc1tsZ1swXV07CgogICAgICAgaWYgKGxvb2t1cCkKICAgICAgIHsKICAgICAgICAgcyA9IGxvb2t1cFtzcmNdOwoKICAgICAgICAgaWYgKHMpCiAgICAgICAgICByZXR1cm4gczsKICAgICAgIH0KICAgICB9CgogICAgIC8vIG90aGVyd2lzZSBzdHJpbmcgYXMgaXMKICAgICByZXR1cm4gc3JjOwogIH0sCgogIGluaXRfbG9jYWxpemF0aW9uOiBmdW5jdGlvbiAoKSB7CiAgICB2YXIgaTE4biA9IHczY19zbGlkeTsKICAgIHZhciBoZWxwX3RleHQgPSB3M2Nfc2xpZHkuaGVscF90ZXh0OwoKICAgIC8vIGVhY2ggc3VjaCBsYW5ndWFnZSBhcnJheSBpcyBkZWNsYXJlZCBpbiB0aGUgbG9jYWxpemUgYXJyYXkKICAgIC8vIHRoaXMgaXMgdXNlZCBhcyBpbiAgdzNjX3NsaWR5LmxvY2FsaXplKCJmb28iKTsKICAgIHRoaXMuc3RyaW5ncyA9IHsKICAgICAgImVzIjp0aGlzLnN0cmluZ3NfZXMsCiAgICAgICJjYSI6dGhpcy5zdHJpbmdzX2NhLAogICAgICAiY3MiOnRoaXMuc3RyaW5nc19jcywKICAgICAgIm5sIjp0aGlzLnN0cmluZ3NfbmwsCiAgICAgICJkZSI6dGhpcy5zdHJpbmdzX2RlLAogICAgICAicGwiOnRoaXMuc3RyaW5nc19wbCwKICAgICAgImZyIjp0aGlzLnN0cmluZ3NfZnIsCiAgICAgICJodSI6dGhpcy5zdHJpbmdzX2h1LAogICAgICAiaXQiOnRoaXMuc3RyaW5nc19pdCwKICAgICAgImVsIjp0aGlzLnN0cmluZ3NfZWwsCiAgICAgICJqcCI6dGhpcy5zdHJpbmdzX2phLAogICAgICAiemgiOnRoaXMuc3RyaW5nc196aCwKICAgICAgInJ1Ijp0aGlzLnN0cmluZ3NfcnUsCiAgICAgICJzdiI6dGhpcy5zdHJpbmdzX3N2CiAgICB9LAoKICAgIGkxOG4uc3RyaW5nc19lc1toZWxwX3RleHRdID0gaTE4bi5oZWxwX2VzOwogICAgaTE4bi5zdHJpbmdzX2NhW2hlbHBfdGV4dF0gPSBpMThuLmhlbHBfY2E7CiAgICBpMThuLnN0cmluZ3NfY3NbaGVscF90ZXh0XSA9IGkxOG4uaGVscF9jczsKICAgIGkxOG4uc3RyaW5nc19ubFtoZWxwX3RleHRdID0gaTE4bi5oZWxwX25sOwogICAgaTE4bi5zdHJpbmdzX2RlW2hlbHBfdGV4dF0gPSBpMThuLmhlbHBfZGU7CiAgICBpMThuLnN0cmluZ3NfcGxbaGVscF90ZXh0XSA9IGkxOG4uaGVscF9wbDsKICAgIGkxOG4uc3RyaW5nc19mcltoZWxwX3RleHRdID0gaTE4bi5oZWxwX2ZyOwogICAgaTE4bi5zdHJpbmdzX2h1W2hlbHBfdGV4dF0gPSBpMThuLmhlbHBfaHU7CiAgICBpMThuLnN0cmluZ3NfaXRbaGVscF90ZXh0XSA9IGkxOG4uaGVscF9pdDsKICAgIGkxOG4uc3RyaW5nc19lbFtoZWxwX3RleHRdID0gaTE4bi5oZWxwX2VsOwogICAgaTE4bi5zdHJpbmdzX2phW2hlbHBfdGV4dF0gPSBpMThuLmhlbHBfamE7CiAgICBpMThuLnN0cmluZ3NfemhbaGVscF90ZXh0XSA9IGkxOG4uaGVscF96aDsKICAgIGkxOG4uc3RyaW5nc19ydVtoZWxwX3RleHRdID0gaTE4bi5oZWxwX3J1OwogICAgaTE4bi5zdHJpbmdzX3N2W2hlbHBfdGV4dF0gPSBpMThuLmhlbHBfc3Y7CgogICAgdzNjX3NsaWR5LmxhbmcgPSBkb2N1bWVudC5ib2R5LnBhcmVudE5vZGUuZ2V0QXR0cmlidXRlKCJsYW5nIik7CgogICAgaWYgKCF3M2Nfc2xpZHkubGFuZykKICAgICAgdzNjX3NsaWR5LmxhbmcgPSBkb2N1bWVudC5ib2R5LnBhcmVudE5vZGUuZ2V0QXR0cmlidXRlKCJ4bWw6bGFuZyIpOwoKICAgIGlmICghdzNjX3NsaWR5LmxhbmcpCiAgICAgIHczY19zbGlkeS5sYW5nID0gImVuIjsKICB9Cn07CgovLyBoYWNrIGZvciBiYWNrIGJ1dHRvbiBiZWhhdmlvcgppZiAodzNjX3NsaWR5LmllNiB8fCB3M2Nfc2xpZHkuaWU3KQp7CiAgZG9jdW1lbnQud3JpdGUoIjxpZnJhbWUgaWQ9J2hpc3RvcnlGcmFtZScgIiArCiAgInNyYz0namF2YXNjcmlwdDpcIjxodG1sIisiPjwvIisiaHRtbD5cIicgIiArCiAgImhlaWdodD0nMScgd2lkdGg9JzEnICIgKwogICJzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7bGVmdDotODAwcHgnPjwvaWZyYW1lPiIpOwp9CgovLyBhdHRhY2ggZXZlbnQgbGlzdGVuZXJzIGZvciBpbml0aWFsaXphdGlvbgp3M2Nfc2xpZHkuc2V0X3VwKCk7CgovLyBoaWRlIHRoZSBzbGlkZXMgYXMgc29vbiBhcyBib2R5IGVsZW1lbnQgaXMgYXZhaWxhYmxlCi8vIHRvIHJlZHVjZSBhbm5veWluZyBzY3JlZW4gbWVzcyBiZWZvcmUgdGhlIG9ubG9hZCBldmVudApzZXRUaW1lb3V0KHczY19zbGlkeS5oaWRlX3NsaWRlcywgNTApOwoK"></script>
<link href="data:text/css;charset=utf-8,div%2Eslide%2Etitlepage%20%7B%0Atext%2Dalign%3A%20center%3B%0Afont%2Dsize%3A%20150%25%3B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dtop%3A%2010%25%3B%0A%7D%0Adiv%2Eslide%2Etitlepage%20h1%20%7B%0Apadding%2Dtop%3A%200%3B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%200%3B%0Apadding%2Dbottom%3A%205%25%3B%0Acolor%3A%20%2300AF64%3B%0A%7D%0Adiv%2Eslide%2Etitlepage%20%7B%0Afont%2Dvariant%3A%20small%2Dcaps%3B%0A%7D%0Adiv%2Eslide%2Etitlepage%20title%20%7B%0Apadding%2Dtop%3A%200%3B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%200%3B%0A%7D%0Adiv%2Eslide%2Etitlepage%20author%20%7B%0Apadding%2Dtop%3A%200%3B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%200%3B%0A%7D%0Adiv%2Eslide%2Etitlepage%20date%20%7B%0Apadding%2Dtop%3A%200%3B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%200%3B%0A%7D%0Adiv%2Eslide%20h2%7B%0Atext%2Dalign%3A%20right%3B%0Acolor%3A%20%2300AF64%3B%0Afont%2Dvariant%3A%20small%2Dcaps%3B%0A%7D%0Adiv%2Eslide%2Esection%2Elevel2%20h1%7B%0Atext%2Dalign%3A%20right%3B%0Acolor%3A%20%2300AF64%3B%0Afont%2Dvariant%3A%20small%2Dcaps%3B%0A%7D%0Adiv%2Eslide%20%7B%0Afont%2Dfamily%3A%20Garamond%2C%20Times%2C%20serif%3B%0A%7D%0Adiv%2Etitleslide%20h1%20%7B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%2020pt%3B%0Apadding%2Dtop%3A%2010%25%3B%0Apadding%2Dbottom%3A%204pt%3B%0Amargin%2Dtop%3A%20100pt%3B%0Amargin%2Dleft%3A%200%3B%0Amargin%2Dright%3A%2060pt%3B%0Amargin%2Dbottom%3A%200%2E5em%3B%0Adisplay%3A%20block%3B%20font%2Dsize%3A%20200%25%3B%0Aline%2Dheight%3A%201%2E2em%3B%0Abackground%3A%20transparent%3B%0Acolor%3A%20%2300AF64%3B%0Afont%2Dvariant%3A%20small%2Dcaps%3B%0A%7D%0Adiv%2Eslide%2Etitle%2Dslide%20h1%20%7B%0Apadding%2Dleft%3A%200%3B%0Apadding%2Dright%3A%2020pt%3B%0Apadding%2Dtop%3A%2010%25%3B%0Apadding%2Dbottom%3A%204pt%3B%0Amargin%2Dtop%3A%20100pt%3B%0Amargin%2Dleft%3A%200%3B%0Amargin%2Dright%3A%2060pt%3B%0Amargin%2Dbottom%3A%200%2E5em%3B%0Adisplay%3A%20block%3B%20font%2Dsize%3A%20200%25%3B%0Aline%2Dheight%3A%201%2E2em%3B%0Abackground%3A%20transparent%3B%0Acolor%3A%20%2300AF64%3B%0Afont%2Dvariant%3A%20small%2Dcaps%3B%0A%7D%0Adel%0A%7B%0Atext%2Ddecoration%3A%20none%3B%0Acolor%3A%20%23ff9200%3B%0A%7D%0A%0A%0A%0A%0A%0A%0A" rel="stylesheet" type="text/css" media="screen, projection, print" />
</head>
<body>
<div class="slide titlepage">
<h1 class="title">Lecture 5</h1>
<p class="author">
DJM
</p>
<p class="date">23 October 2018</p>
</div>
<div class="slide section level2">
</div>
<div id="model-selection-and-tuning-parameters" class="slide section level2">
<h1>Model selection and tuning parameters</h1>
<ul>
<li>Often “model selection” means “choosing a set of predictors”
<ul>
<li>E.g. Lasso performs model selection by setting many <span class="math inline">\(\widehat\beta=0\)</span></li>
</ul></li>
<li>I define “model selection” more broadly</li>
<li>I mean “making any necessary decisions to arrive at a final model”</li>
<li>Sometimes this means “choosing predictors”</li>
<li>It could also mean “selecting a tuning parameter”</li>
<li>Or “deciding whether to use LASSO or Ridge” (and picking tuning parameters)</li>
<li>Recall Lecture 2: “A statistical model <span class="math inline">\(\mathcal{P}\)</span> is a collection of probability distributions”</li>
<li>Model selection means “choose <span class="math inline">\(\mathcal{P}\)</span>”</li>
</ul>
</div>
<div id="my-pet-peeve" class="slide section level2">
<h1>My pet peeve</h1>
<ul>
<li>Often people talk about “using LASSO” or “using an SVM”</li>
<li>This isn’t quite right.</li>
<li>LASSO is a regularized procedure that depends on <span class="math inline">\(\lambda\)</span></li>
<li>To “use LASSO”, you must pick a particular <span class="math inline">\(\lambda\)</span></li>
<li>Different ways to pick <span class="math inline">\(\lambda\)</span> (today’s topic) produce different final estimators</li>
<li>Thus we should say “I used LASSO+CV” or “I used Ridge+GCV”</li>
<li>Probably also indicate “how” (I used the CV minimum.)</li>
</ul>
</div>
<div id="bias-and-variance" class="slide section level2">
<h1>Bias and variance</h1>
<p>Recall that <span class="math inline">\(\mathcal{D}\)</span> is the training data.</p>
<p><span class="math display">\[
R_n(f) := \mathbb{E}\left[ L(Y,f(X)) \right] = \mathbb{E}\left[ \mathbb{E}\left[ L(Y,f(X)) \ \vert\ \mathcal{D} \right] \right]
\]</span></p>
<ul>
<li>The book calls <span class="math inline">\(R_n(f) = \textrm{Err}\)</span> and <span class="math inline">\(\mathbb{E}\left[ L(Y,f(X)) \ \vert\ \mathcal{D} \right] = \textrm{Err}_\mathcal{D}\)</span></li>
<li>If you use <span class="math inline">\(\mathcal{D}\)</span> to choose <span class="math inline">\(f\)</span>, then these are different.</li>
<li>If you use <span class="math inline">\(\mathcal{D}\)</span> to choose <span class="math inline">\(f\)</span>, then both depend on how much data you have seen.</li>
</ul>
</div>
<div id="risk-estimates" class="slide section level2">
<h1>Risk estimates</h1>
<p><img src="" /></p>
<ul>
<li>We can use risk estimates for 2 different goals</li>
</ul>
<ol style="list-style-type: decimal">
<li>Choosing between different potential models.</li>
<li>Characterizing the out-of-sample performance of the chosen model.</li>
</ol>
<ul>
<li>I am not generally aware of other methods of accomplishing (1).</li>
<li>You could avoid making a choice (Chapter 8), or you could use a procedure that makes the choice “automagically”</li>
<li>The method you choose to estimate risk will have large implications for both 1 and 2.</li>
</ul>
</div>
<div id="a-model-selection-picture" class="slide section level2">
<h1>A model selection picture</h1>
<p><img src="" /></p>
</div>
<div id="why" class="slide section level2">
<h1>Why?</h1>
<p>We want to do model selection for at least three reasons:</p>
<ul>
<li><p><strong>Prediction accuracy:</strong> Can essentially <em>always</em> be improved by introducing some bias</p></li>
<li><p><strong>Interpretation:</strong> A large number of features can sometimes be distilled into a smaller number that comprise the “big (little?) picture”</p></li>
<li><p><strong>Computation:</strong> A large <span class="math inline">\(p\)</span> can create a huge computational bottleneck.</p></li>
</ul>
</div>
<div id="things-you-shouldnt-do" class="slide section level2">
<h1>Things you shouldn’t do</h1>
<ul>
<li>Estimate <span class="math inline">\(R_n\)</span> with <span class="math inline">\(\widehat{R}_n(f) = \sum_{i=1}^n L(Y_i,\widehat{f}(X_i))\)</span>.</li>
<li>Throw away variables with small <span class="math inline">\(p\)</span>-values.</li>
<li>Use <span class="math inline">\(F\)</span>-tests</li>
<li>Compare the log-likelihood between different models</li>
</ul>
<p>(These last two can occasionally be ok, but aren’t in general. You should investigate the assumptions that are implicit in them.)</p>
</div>
<div id="risk-estimators" class="title-slide slide section level1"><h1>Risk estimators</h1></div><div id="unbiased-risk-estimation" class="slide section level2">
<h1>Unbiased risk estimation</h1>
<ul>
<li>It is very hard (impossible?) to estimate <span class="math inline">\(R_n\)</span>.</li>
<li>Instead we focus on <span class="math display">\[
\overline{R}_n(f) = \mathbb{E}_{Y_1,\ldots,Y_n}\left[\mathbb{E}_{Y^0}\left[\frac{1}{n}\sum_{i=1}^n L(Y^0_i,\widehat{f}(x_i))\ \vert\ \mathcal{D}\right]\right].
\]</span></li>
<li>The difference is that <span class="math inline">\(\overline{R}_n(f)\)</span> averages over the observed <span class="math inline">\(x_i\)</span> rather than taking the expected value over the distribution of <span class="math inline">\(X\)</span>.</li>
<li>In the “fixed design” setting, these are equal.</li>
</ul>
<p>For many <span class="math inline">\(L\)</span> and some predictor <span class="math inline">\(\widehat{f}\)</span>, one can show <span class="math display">\[
\overline{R}_n(\widehat{f}) = \mathbb{E}\left[ \widehat{R}_n(\widehat{f}) \right] + \frac{2}{n} \sum_{i=1}^n \mathrm{Cov}\left[Y_i,\ \widehat{f}(x_i)\right].
\]</span></p>
<p>This suggests estimating <span class="math inline">\(\overline{R}_n(\widehat{f})\)</span> with <span class="math display">\[
\widehat{R}_{gic} := \widehat{R}_n(\widehat{f}) + \textrm{pen}.
\]</span></p>
<p>If <span class="math inline">\(\mathbb{E}\left[ \textrm{pen} \right] = \frac{2}{n}\sum_{i=1}^n \mathrm{Cov}\left[Y_i,\ \widehat{f}(x_i)\right]\)</span>, we have an unbiased estimator of <span class="math inline">\(\overline{R}_n(\widehat{f})\)</span>.</p>
</div>
<div id="example-normal-means" class="title-slide slide section level1"><h1>Example: Normal means</h1></div><div id="normal-means-model" class="slide section level2">
<h1>Normal means model</h1>
<p>Suppose we observe the following data: <span class="math display">\[
Y_i = \beta_i + \epsilon_i, \quad\quad i=1,\ldots,n
\]</span> where <span class="math inline">\(\epsilon_i\overset{iid}{\sim} \mbox{N}(0,1)\)</span>.</p>
<p>We want to estimate <span class="math display">\[\boldsymbol{\beta} = (\beta_1,\ldots,\beta_n).\]</span></p>
<p>The usual estimator (MLE) is <span class="math display">\[\widehat{\boldsymbol{\beta}}^{MLE} = (Y_1,\ldots,Y_n).\]</span></p>
<p>This estimator has lots of nice properties: <strong>consistent, unbiased, UMVUE, (asymptotic) normality…</strong></p>
</div><div id="mles-are-bad" class="slide section level2">
<h1>MLEs are bad</h1>
<p>But, the standard estimator <strong>STINKS!</strong> It’s a bad estimator.</p>
<p>It has no bias, but big variance.</p>
<p><span class="math display">\[
R_n(\widehat{\boldsymbol{\beta}}^{MLE}) = \mbox{bias}^2 + \mbox{var} = 0
+ n\cdot 1= n
\]</span></p>
<p>What if we use a biased estimator?</p>
<p>Consider the following estimator instead: <span class="math display">\[
\widehat{\beta}_i^S = \begin{cases} Y_i & i \in S\\ 0 & \mbox{else}. \end{cases}
\]</span></p>
<p>Here <span class="math inline">\(S \subseteq \{1,\ldots,n\}\)</span>.</p>
</div><div id="biased-normal-means" class="slide section level2">
<h1>Biased normal means</h1>
<p>What is the risk of this estimator?</p>
<p><span class="math display">\[
R_n(\widehat{\boldsymbol{\beta}}^S) = \sum_{i\not\in S} \beta_i^2 + |S|.
\]</span></p>
<p>In other words, if some <span class="math inline">\(|\beta_i| < 1\)</span>, then don’t bother estimating them!</p>
<p>In general, introduced parameters like <span class="math inline">\(S\)</span> will be called <strong>tuning parameters</strong>.</p>
<p>Of course we don’t know which <span class="math inline">\(|\beta_i| < 1\)</span>.</p>
<p>But we could try to estimate <span class="math inline">\(R_n(\widehat{\boldsymbol{\beta}}^S)\)</span>, and choose <span class="math inline">\(S\)</span> to minimize our estimate.</p>
</div><div id="estimating-the-risk" class="slide section level2">
<h1>Estimating the risk</h1>
<p>By definition, for any estimator <span class="math inline">\(\widehat{\boldsymbol{\beta}}\)</span>,</p>
<p><span class="math display">\[
R_n(\widehat{\boldsymbol{\beta}}) =
\mathbb{E}\left[ \sum_{i=1}^n
(\widehat{\beta_i}-\beta_i)^2\right]
\]</span></p>
<p>An intuitive estimator of <span class="math inline">\(R_n\)</span> is</p>
<p><span class="math display">\[
\widehat{R}_n(\widehat{\boldsymbol{\beta}}) = \sum_{i=1}^n (\widehat{\beta_i}- Y_i)^2.
\]</span></p>
<p>This is known as the <strong>training error</strong> and it can be shown that <span class="math display">\[
\widehat{R}_n(\widehat{\boldsymbol{\beta}}) \approx R_n(\widehat{\boldsymbol{\beta}}).
\]</span></p>
<p>Also, <span class="math display">\[
\widehat{\boldsymbol{\beta}}^{MLE} = \arg\min_{\beta} \widehat{R}_n(\widehat{\boldsymbol{\beta}}^{MLE}).
\]</span></p>
<p>What could possibly go wrong?</p>
</div><div id="dangers-of-using-the-training-error" class="slide section level2">
<h1>Dangers of using the training error</h1>
<p>Although <span class="math display">\[
\widehat{R}_n(\widehat{\boldsymbol{\beta}}) \approx R_n(\widehat{\boldsymbol{\beta}}),
\]</span> this approximation can be very bad. In fact:</p>
<p><strong>Training Error:</strong> <span class="math inline">\(\widehat{R}_n(\widehat{\boldsymbol{\beta}}^{MLE}) = 0\)</span></p>
<p><strong>Risk:</strong> <span class="math inline">\(R_n(\widehat{\boldsymbol{\beta}}^{MLE}) = n\)</span></p>
<p>In this case, the <strong>optimism</strong> of the training error is <span class="math inline">\(n\)</span>.</p>
</div><div id="normal-means" class="slide section level2">
<h1>Normal means</h1>
<p>What about <span class="math inline">\(\widehat{\boldsymbol{\beta}}^S\)</span>?</p>
<p><span class="math display">\[
\widehat{R}_n(\widehat{\boldsymbol{\beta}}^S) = \sum_{i=1}^n (\widehat{\beta_i}-
Y_i)^2 = \sum_{i \notin S} Y_i^2 %+ |S|\sigma^2
\]</span></p>
<p>Well <span class="math display">\[
\mathbb{E}\left[\widehat{R}_n(\widehat{\boldsymbol{\beta}}^S)\right] =
R_n(\widehat{\boldsymbol{\beta}}^S) - 2|S| +n.
\]</span></p>
<p>So I can choose <span class="math inline">\(S\)</span> by minimizing <span class="math inline">\(\widehat{R}_n(\widehat{\boldsymbol{\beta}}^S) + 2|S|\)</span>.</p>
<p><span class="math display">\[
\mbox{Estimate of Risk} = \mbox{training error} + \mbox{penalty}.
\]</span></p>
<p>The penalty term corrects for the optimism.</p>
</div><div id="pen-in-the-nice-cases" class="slide section level2">
<h1>pen in the nice cases</h1>
<p><strong>Result:</strong><br />
Suppose <span class="math inline">\(\widehat{f}(x_i) = HY\)</span> for some matrix <span class="math inline">\(H\)</span>, and <span class="math inline">\(Y_i\)</span>’s are IID. Then <span class="math display">\[
\frac{2}{n} \sum_{i=1}^n \mathrm{Cov}\left[Y_i,\ \widehat{f}(x_i)\right] = \frac{2}{n} \sum_{i=1}^n H_{ii} \mathrm{Cov}\left[Y_i,\ Y_i\right] = \frac{2\mathbb{V}\left[ Y \right]}{n} \mbox{tr}(H).
\]</span></p>
<ul>
<li>Such estimators are called “linear smoothers”.</li>
<li>Obvious extension to the heteroskedastic case.</li>
<li>We call <span class="math inline">\(\frac{1}{\mathbb{V}\left[ Y \right]}\sum_{i=1}^n \mathrm{Cov}\left[Y_i,\ \widehat{f}(x_i)\right]\)</span> the <strong>degrees of freedom</strong> of <span class="math inline">\(\widehat{f}\)</span>.</li>
<li>Linear smoothers are ubiquitous</li>
<li>Examples: OLS, ridge regression, KNN, dictionary regression, smoothing splines, kernel regression, etc.</li>
</ul>
</div><div id="examples-of-df" class="slide section level2">
<h1>Examples of DF</h1>
<ul>
<li><p>OLS <span class="math display">\[
H = X^\top (X^\top X)^{-1} X^\top \Rightarrow \mbox{tr}(H) = \textrm{rank}(X) = p
\]</span></p></li>
<li><p>Ridge (decompose <span class="math inline">\(X=UDV^\top\)</span>) <span class="math display">\[
H = X^\top (X^\top X + \lambda I_p)^{-1} X^\top \Rightarrow \mbox{tr}(H) = \sum_{i=1}^p \frac{d_i^2}{d_i^2 + \lambda} < \min\{p,n\}
\]</span></p></li>
<li><p>KNN <span class="math inline">\(\textrm{df} = n/K\)</span> (each point is it’s own nearest neighbor, it gets weight <span class="math inline">\(1/K\)</span>)</p></li>
</ul>
</div><div id="finding-risk-estimators" class="slide section level2">
<h1>Finding risk estimators</h1>
<p>This isn’t the way everyone introduces/conceptualizes prediction risk.</p>
<p>For me, thinking of <span class="math inline">\(\widehat{R}_n\)</span> as overly optimistic and correcting for that optimism is conceptually appealing</p>
<p>An alternative approach is to discuss <strong>information criteria</strong>.</p>
<p>In this case one forms a (pseudo)-metric on probability measures.</p>
</div>
<div id="comparing-probability-measures" class="title-slide slide section level1"><h1>Comparing probability measures</h1></div><div id="kullback-leibler" class="slide section level2">
<h1>Kullback-Leibler</h1>
<p>Suppose we have data <span class="math inline">\(Y\)</span> that comes from the probability density function <span class="math inline">\(f\)</span>.</p>
<p>What happens if we use the probability density function <span class="math inline">\(g\)</span> instead?</p>
<p><strong>Example:</strong><br />
Suppose <span class="math inline">\(Y \sim N(\mu,\sigma^2) =: f\)</span>. We want to predict a new <span class="math inline">\(Y_*\)</span>, but we model it as <span class="math inline">\(Y_* \sim N(\mu_*,\sigma^2) =: g\)</span></p>
<p>How <em>far</em> away are we? We can either compare <span class="math inline">\(\mu\)</span> to <span class="math inline">\(\mu_*\)</span> or <span class="math inline">\(Y\)</span> to <span class="math inline">\(Y^*\)</span>.</p>
<p>Or, we can compute how <em>far</em> <span class="math inline">\(f\)</span> is from <span class="math inline">\(g\)</span>.</p>
<p>We need a notion of distance.</p>
</div><div id="kullback-leibler-1" class="slide section level2">
<h1>Kullback-Leibler</h1>
<p>One central idea is <strong>Kullback-Leibler</strong> divergence (or discrepancy)</p>
<p><span class="math display">\[\begin{aligned}
KL(f,g) & = \int \log\left( \frac{f(y)}{g(y)} \right)f(y) dy \\
& \propto
-\int \log (g(y)) f(y) dy \qquad \textrm{(ignore term without $g$)}\\
& =
-\mathbb{E}_f [\log (g(Y))] \end{aligned}\]</span></p>
<p>This gives us a sense of the <strong>loss</strong> incurred by (incorrectly) using <span class="math inline">\(g\)</span> instead of <span class="math inline">\(f\)</span>.</p>
<ul>
<li>KL is not symmetric: <span class="math inline">\(KL(f,g) \neq KL(g,f)\)</span>, so it’s not a distance, but it is non-negative and satisfies the triangle inequality.</li>
</ul>
<p>Usually, <span class="math inline">\(f,\ g\)</span> will depend on some parameters, call them <span class="math inline">\(\theta\)</span></p>
</div><div id="kl-example" class="slide section level2">
<h1>KL example</h1>
<ul>
<li>In regression, we can specify <span class="math inline">\(f = N(X^{\top} \beta_*, \sigma^2)\)</span></li>
<li>for a fixed (true) <span class="math inline">\(\beta_*\)</span>,</li>
<li>let <span class="math inline">\(g_\theta = N(X^{\top}\beta,\sigma^2)\)</span> over all <span class="math inline">\(\theta = (\beta,\sigma^2) \in \mathbb{R}^p\times\mathbb{R}^+\)</span></li>
<li><span class="math inline">\(KL(f,g_\theta) = -\mathbb{E}_f [\log (g_\theta(Y))]\)</span>, we want to minimize this over <span class="math inline">\(\theta\)</span>.</li>
<li>But <span class="math inline">\(f\)</span> is unknown, so we minimize <span class="math inline">\(-\log (g_\theta(Y))\)</span> instead.</li>
<li>This is the maximum likelihood value <span class="math display">\[\widehat{\theta}_{ML} = \arg\max_\theta g_\theta(Y)\]</span></li>
<li>We don’t actually need to assume things about a true model nor have it be nested in the alternative models to make this work.</li>
</ul>
</div><div id="operationalizing" class="slide section level2">
<h1>Operationalizing</h1>
<ul>
<li>Now, to get an operational characterization of the KL divergence at the ML solution <span class="math display">\[-\mathbb{E}_f [\log (g_{\widehat\theta_{ML}}(Y))]\]</span> we need an approximation (don’t know <span class="math inline">\(f\)</span>, still).</li>
</ul>
<p><strong>Result</strong>:<br />
If you maximize the likelihood for a finite dimensional parameter vector <span class="math inline">\(\theta\)</span> of length <span class="math inline">\(p\)</span>, then as <span class="math inline">\(n\rightarrow \infty\)</span>, <span class="math display">\[-\mathbb{E}_f [\log (g_\theta(Y))] = -\log (g_\theta(Y)) + p.\]</span></p>
<ul>
<li>This is AIC (originally “an information criterion”, now “Akaike’s information criterion”).</li>
<li>Choose the model with smallest AIC</li>
<li>Often multiplied by 2 “for historical reasons”. Ocassionally, given as the negative of this “to be extra annoying”.</li>
<li>Your estimator for <span class="math inline">\(\theta\)</span> needs to be the MLE.</li>
<li><span class="math inline">\(p\)</span> includes all estimated parameters.</li>
</ul>
</div><div id="back-to-the-ols-example" class="slide section level2">
<h1>Back to the OLS example</h1>
<ul>
<li>Suppose <span class="math inline">\(Y\)</span> comes from the standard normal linear regression model with known variance <span class="math inline">\(\sigma^2\)</span>.</li>
</ul>
<p><span class="math display">\[
\begin{aligned}
-\log(g_{\widehat{\theta}}) &\propto \log(\sigma^2) + \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - x_i^\top \widehat{\beta}_{MLE})^2\\ \Rightarrow AIC &= 2\frac{n}{2\sigma^2}\widehat{R}_n + 2p = \widehat{R}_n + \frac{2\sigma^2}{n} p.
\end{aligned}
\]</span></p>
<ul>
<li>Suppose <span class="math inline">\(Y\)</span> comes from the standard normal linear regression model with <em>unknown</em> variance <span class="math inline">\(\sigma^2\)</span>. Note that <span class="math inline">\(\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (y_i-x_i^\top\widehat{\beta}_{MLE})^2\)</span>.</li>
</ul>
<p><span class="math display">\[
\begin{aligned}
-\log(g_{\widehat{\theta}}) &\propto \frac{n}{2}\log(\widehat{\sigma}^2) + \frac{1}{2\widehat{\sigma^2}}\sum_{i=1}^n (y_i - x_i^\top \widehat{\beta}_{MLE})^2\\ \Rightarrow AIC &\propto 2 n\log(\widehat{\sigma}^2)/2 + 2(p+1) \propto \log(\widehat{R}_n) + \frac{2(p+1)}{n}.
\end{aligned}
\]</span></p>
</div>
<div id="related-quantities" class="title-slide slide section level1"><h1>Related quantities</h1></div><div id="mallows-cp" class="slide section level2">
<h1>Mallow’s Cp</h1>
<ul>
<li>Defined for linear regression.</li>
<li>No likelihood assumptions.</li>
<li>Variance is known <span class="math display">\[
C_p = \widehat{R}_n + 2\sigma^2 \frac{\textrm{df}}{n} = AIC
\]</span></li>
</ul>
</div><div id="bayes-factor" class="slide section level2">
<h1>Bayes factor</h1>
<p>For Bayesian Analysis, we want the posterior. Suppose we have two models A and B.</p>
<p><span class="math display">\[
\begin{aligned}
P(B\ \vert\ \mathcal{D}) &= \frac{P(\mathcal{D}\ \vert\ B)P(B)}{P(\mathcal{D})}
\propto P(\mathcal{D}\ \vert\ B)P(B)\\
P(A\ \vert\ \mathcal{D}) &= \frac{P(\mathcal{D}\ \vert\ A)P(A)}{P(\mathcal{D})}
\propto P(\mathcal{D}\ \vert\ A)P(A)
\end{aligned}
\]</span> We assume that <span class="math inline">\(P(A) = P(B)\)</span>. Then to compare, <span class="math display">\[
\frac{P(B\ \vert\ \mathcal{D})}{P(A\ \vert\ \mathcal{D})} = \frac{P(\mathcal{D}\ \vert\ B)} {P(\mathcal{D}\ \vert\ A)}.
\]</span></p>
<ul>
<li>Called the <strong>Bayes Factor</strong>.</li>
<li>This is the ratio of marginal likelihoods under the different models.</li>
<li>Not easy to calculate generally.</li>
<li>Use the Laplace approximation, some simplifications, assumptions: <span class="math display">\[
\log P(\mathcal{D}\ \vert\ B) = \log P(\mathcal{D} \ \vert\ \widehat{\theta},\ B) -\frac{p\log(n)}{2} + O(1)
\]</span></li>
<li>Multiply through by <span class="math inline">\(-2\)</span>: <span class="math display">\[
BIC = -\log (g_\theta(Y)) + p\log(n) = \log(\widehat{R}_n) + \frac{p\log(n)}{n}
\]</span></li>
<li>Also called Schwarz IC. Compare to AIC (variance unknown case)</li>
</ul>
</div><div id="sure" class="slide section level2">
<h1>SURE</h1>
<p><span class="math display">\[
\widehat{R}_{gic} := \widehat{R}_n(\widehat{f}) + \textrm{pen}.
\]</span> If <span class="math inline">\(\mathbb{E}\left[ \textrm{pen} \right] = \frac{2}{n}\sum_{i=1}^n \mathrm{Cov}\left[Y_i,\ \widehat{f}(x_i)\right]\)</span>, we have an unbiased estimator of <span class="math inline">\(\overline{R}_n(\widehat{f})\)</span>.</p>
<p><strong>Result: (Stein’s Lemma)</strong><br />
Suppose <span class="math inline">\(Y_i\sim N(\mu_i,\sigma^2)\)</span> and suppose <span class="math inline">\(f\)</span> is weakly differentiable. Then <span class="math display">\[
\frac{1}{\sigma^2} \sum_{i=1}^n\mathrm{Cov}\left[Y_i,\ \widehat{f}_i(Y)\right] = \mathbb{E}\left[ \sum_{i=1}^n \frac{\partial f_i}{\partial y_i} \widehat{f}(Y) \right].
\]</span> * Note: Here I’m writing <span class="math inline">\(\widehat{f}\)</span> as a function of <span class="math inline">\(Y\)</span> rather than <span class="math inline">\(x\)</span>. * This gives “Stein’s Unbiased Risk Estimator” <span class="math display">\[
SURE = \widehat{R}_n(\widehat{f}) + 2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i} \widehat{f}(Y) - n\sigma^2.
\]</span> * If <span class="math inline">\(f(Y) = HY\)</span> is linear, we’re back to AIC (variance known case) * If <span class="math inline">\(\sigma^2\)</span> is unknown, may not be unbiased anymore. May not care.</p>
</div>
<div id="cv" class="title-slide slide section level1"><h1>CV</h1></div><div id="what-is-cross-validation" class="slide section level2">
<h1>What is Cross Validation</h1>
<ul>
<li>Cross validation</li>
<li>This is another way of estimating the prediction risk.</li>
<li>Why?</li>
</ul>
<p>To recap:</p>
<p><span class="math display">\[
R_n(\widehat{f}) = \mathbb{E}[L(Y,\widehat{f}(X))]
\]</span> where the expectation is taken over the new data point <span class="math inline">\((Y,X)\)</span> and <span class="math inline">\(\mathcal{D}_n\)</span> (everything that is random).</p>
<p>We saw one estimator of <span class="math inline">\(R_n\)</span>: <span class="math display">\[
\widehat{R}_n(\widehat{f}) = \sum_{i=1}^n L(Y_i,\widehat{f}(X_i)).
\]</span></p>
<p>This is the training error. It is a <strong>BAD</strong> estimator because it is often optimistic.</p>
</div><div id="intuition-for-cv" class="slide section level2">
<h1>Intuition for CV</h1>
<ul>
<li><p>One reason that <span class="math inline">\(\widehat{R}_n(\widehat{f})\)</span> is bad is that we are using the same data to pick <span class="math inline">\(\widehat{f}\)</span> <strong>AND</strong> to estimate <span class="math inline">\(R_n\)</span>.</p></li>
<li><p>Notice that <span class="math inline">\(R_n\)</span> is an expected value over a <strong>NEW</strong> observation <span class="math inline">\((Y,X)\)</span>.</p></li>
<li><p>We don’t have new data.</p></li>
</ul>
</div><div id="wait-a-minute" class="slide section level2">
<h1>Wait a minute…</h1>
<p>…or do we?</p>
<ul>
<li><p>What if we set aside one observation, say the first one <span class="math inline">\((Y_1, X_1)\)</span>.</p></li>
<li><p>We estimate <span class="math inline">\(\widehat{f}^{(1)}\)</span> without using the first observation.</p></li>
<li><p>Then we test our prediction:</p></li>
</ul>
<p><span class="math display">\[
\widetilde{R}_1(\widehat{f}^{(1)}) = L(Y_1, \widehat{f}^{(1)}(X_1)).
\]</span></p>
<ul>
<li><p>But that was only one data point <span class="math inline">\((Y_1, X_1)\)</span>. Why stop there?</p></li>
<li><p>Do the same with <span class="math inline">\((Y_2, X_2)\)</span>! Get an estimate <span class="math inline">\(\widehat{f}^{(2)}\)</span> without using it, then</p></li>
</ul>
<p><span class="math display">\[
\widetilde{R}_2(\widehat{f}^{(2)}) = L(Y_2, \widehat{f}^{(2)}(X_2)).
\]</span></p>
</div><div id="keep-going" class="slide section level2">
<h1>Keep going</h1>
<ul>
<li>We can keep doing this until we try it for every data point.</li>
<li>And then average them! (Averages are good)</li>
<li>In the end we get <span class="math display">\[
\mbox{LOO-CV} = \frac{1}{n}\sum_{i=1}^n \widetilde{R}_i(\widehat{f}^{(i)}) = \frac{1}{n}\sum_{i=1}^n
L(Y_i - \widehat{f}^{(i)}(X_i))
\]</span></li>
<li>This is leave-one-out cross validation</li>
</ul>
</div><div id="problems-with-loo-cv" class="slide section level2">
<h1>Problems with LOO-CV</h1>
<ol style="list-style-type: decimal">
<li>Each held out set is small <span class="math inline">\((n=1)\)</span>. Therefore, the variance of each individual prediction is high.</li>
<li>Since each held out set is small, the training sets overlap. This is bad.
<ul>
<li>Usually, averaging reduces variance: <span class="math display">\[
\mathbb{V}\left[ \overline{X} \right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}\left[ X_i \right] = \frac{1}{n}\mathbb{V}\left[ X_1 \right].
\]</span></li>
<li>But only if the variables are independent. If not, then <span class="math display">\[
\begin{aligned}
\mathbb{V}\left[ \overline{X} \right] &= \frac{1}{n^2}\mathbb{V}\left[ \sum_{i=1}^n X_i \right]\\
& = \frac{1}{n}\mathbb{V}\left[ X_1 \right] + \frac{1}{n^2}\sum_{i\neq j} \mathrm{Cov}\left[X_i,\ X_j\right].
\end{aligned}
\]</span></li>
<li>Since the training sets overlap a lot, that covariance can be pretty big.</li>
</ul></li>
<li>We have to estimate this model <span class="math inline">\(n\)</span> times.
<ul>
<li>There is an exception to this one. More on that in a minute.</li>
</ul></li>
</ol>
</div><div id="loo-cv-with-linear-smoothers" class="slide section level2">
<h1>LOO-CV with linear smoothers</h1>
<p>Suppose <span class="math inline">\(\widehat{Y} = HY\)</span> and <span class="math inline">\(L(a,b) = (a-b)^2\)</span>.</p>
<ul>
<li><p>After much tedious algebra, one can show that <span class="math display">\[
\frac{1}{n}\sum_{i=1}^n \widetilde{R}_i(\widehat{f}^{(i)}) = \frac{1}{n} \sum_{i=1}^n
L(Y_i - \widehat{f}^{(i)}(X_i)) = \frac{1}{n} \sum_{i=1}^n
\frac{(Y_i - \widehat{f}(X_i))^2}{(1-H_{ii})^2}.
\]</span></p></li>
<li><p>This means we only need to fit the model <strong>once</strong> rather than <span class="math inline">\(n\)</span> times</p></li>
<li><p>This also suggests how to demonstrate that CV and AIC are asymptotically equivalent.</p></li>
<li><p>Suppose <span class="math inline">\((1-H_{ii}) \approx (1-h) \forall i\)</span>. Then, <span class="math display">\[
\log(\textrm{LOO-CV}) = \log(\widehat{R}_n) - \log((1-h)^2)
\]</span></p></li>
<li><p>As <span class="math inline">\(n\)</span> gets large (<span class="math inline">\(p\)</span>-fixed), <span class="math inline">\(h\approx p/n\)</span>, and <span class="math inline">\(\log(1-x)\approx x\)</span> when <span class="math inline">\(x\)</span> is small <span class="math display">\[
\Rightarrow -\log((1-h)^2) \approx 2p/n
\]</span> just like AIC.</p></li>
</ul>
</div><div id="tedious-algebra" class="slide section level2">
<h1>Tedious algebra</h1>
<p><strong>Lemma</strong> (Sherman-Morrison-Woodbury)</p>
<p>Suppose we have four matrices: <span class="math inline">\(A\)</span> <span class="math inline">\(C\)</span> <span class="math inline">\(U\)</span> <span class="math inline">\(V\)</span>, if <span class="math inline">\(A\)</span> <span class="math inline">\(C\)</span> are invertible and everything conforms, then <span class="math display">\[
(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.
\]</span></p>
<p>Proof of LOO-CV formula:</p>
<p><span class="math display">\[
\begin{aligned}
y_i - \widehat{y}_{(i)}
& =
y_i - x_i\widehat{\beta}_{(i)} \\
&= y_i -x_i(X^T_{(i)}X_{(i)})^{-1}x^T_{(i)}y_{(i)} \\
&= y_i -x_i\left((X^TX)^{-1} + \frac{(X^TX)x^T_ix_i(X^TX)^{-1}}{1-h_{ii}}\right)x^T_{(i)}y_{(i)} \\
&= y_i -x_i\left((X^TX)^{-1} + \frac{(X^TX)x^T_ix_i(X^TX)^{-1}}{1-h_{ii}}\right)(X^TY-x^T_{i}y_{i}) \\
&= y_i -x_i(X^TX)^{-1}X^TY+x_i(X^TX)^{-1}x^T_{i}y_{i}
+ \frac{x_i(X^TX)x^T_ix_i(X^TX)^{-1}x^T_iy_i}{1-h_{ii}}-\frac{x_i(X^TX)x^T_ix_i(X^TX)^{-1}X^TY}{1-h_{ii}}\\
&= y_i -x_i\widehat{\beta}+h_{ii}y_{i}
+ \frac{h^2_{ii}y_i}{1-h_{ii}}-\frac{h_{ii}x_i\widehat{\beta}}{1-h_{ii}}\\
&= y_i -x_i\widehat{\beta}+\frac{(1-h_{ii})h_{ii}y_{i}}{1-h_{ii}}
+ \frac{h^2_{ii}y_i}{1-h_{ii}}-\frac{h_{ii}x_i\widehat{\beta}}{1-h_{ii}}\\
&= y_i -x_i\widehat{\beta}+\frac{h_{ii}y_{i}}{1-h_{ii}}-\frac{h_{ii}x_i\widehat{\beta}}{1-h_{ii}}\\
&= \frac{(y_i-x_i\widehat{\beta})(1-h_{ii})}{1-h_{ii}}+\frac{h_{ii}(y_i-x_i\widehat{\beta})}{1-h_{ii}}\\
&= \frac{y_i-x_i\widehat{\beta}}{1-h_{ii}}\\
&= \frac{y_i-\widehat{y}_i}{1-h_{ii}}\\
&= \frac{\widehat{e}_i}{1-h_{ii}}
\end{aligned}
\]</span></p>
</div><div id="generalized-cross-validation-gcv" class="slide section level2">
<h1>Generalized Cross-Validation (GCV)</h1>
<p>This estimator is close to LOOCV in that we replace <span class="math inline">\(1-H_{ii}\)</span> by <span class="math inline">\(1-\frac{1}{n}\mbox{tr}(H)\)</span> in the equation above.</p>
<p><span class="math display">\[
GCV = \frac{\widehat{R}_n}{\left(1-\frac{\mbox{tr}(H)}{n}\right)^2}
\]</span></p>
<ul>
<li>Also asymptotically equivalent to AIC</li>
<li>Optimal estimator for Ridge regression/RKHS norm regularized smoothers (splines, etc.)</li>
<li>For selection, tends to dramatically over select.</li>
</ul>
</div><div id="generic-cross-validation" class="slide section level2">
<h1>Generic Cross Validation</h1>
<p>Let <span class="math inline">\(\mathcal{N} = \{1,\ldots,n\}\)</span> be the index set for <span class="math inline">\(\mathcal{D}\)</span></p>
<p>Define a distribution <span class="math inline">\(\mathcal{V}\)</span> over <span class="math inline">\(\mathcal{N}\)</span> (<span class="math inline">\(v\sim\mathcal{V} \subseteq \mathcal{N}\)</span>)</p>
<p>Then, we can form a general <em>cross-validation</em> estimator as <span class="math display">\[
\textrm{CV}_{\mathcal{V}}(\widehat f) = \mathbb{E}\left[ \frac{1}{|v|} \sum_{i \in v} L\left(Y_i, \widehat{f}^{(v)}(X_i)\right) \ \vert\ \mathcal{V} \right]
\]</span></p>
</div><div id="more-general-cross-validation-schemes-examples" class="slide section level2">
<h1>More general cross-validation schemes: Examples</h1>
<p><span class="math display">\[
\textrm{CV}_{\mathcal{V}}(\widehat f) = \mathbb{E}\left[ \frac{1}{|v|} \sum_{i \in v} L\left(Y_i, \widehat{f}^{(v)}(X_i)\right) \ \vert\ \mathcal{V} \right]
\]</span></p>
<ul>
<li><p><strong>K-fold:</strong><br />
Fix <span class="math inline">\(V = \{ v_1,\ldots,v_K\}\)</span> such that <span class="math inline">\(v_j \cap v_k = \emptyset\)</span> and <span class="math inline">\(\bigcup_j v_j = \mathcal{N}\)</span> <span class="math display">\[\textrm{CV}_{K}(\widehat f) = \frac{1}{K} \sum_{v \in V} \frac{1}{|v|} \sum_{i \in v} (Y_i - \widehat{f}^{(v)}(X_i))^2\]</span></p></li>
<li><p><strong>Bootstrap:</strong><br />
Let <span class="math inline">\(\mathcal{V}\)</span> be given by the bootstrap distribution over <span class="math inline">\(\mathcal{N}\)</span> (that is, sampling <span class="math inline">\(B\)</span> indices randomly with replacement many times)</p></li>
<li><p><strong>Factorial:</strong><br />
Let <span class="math inline">\(\mathcal{V}\)</span> be given by all subsets (or a subset of all subsets) of <span class="math inline">\(\mathcal{N}\)</span> (that is, putting mass <span class="math inline">\(1/(2^n-2)\)</span> on each subset)</p></li>
</ul>
</div><div id="more-general-cross-validation-schemes-a-comparison" class="slide section level2">
<h1>More general cross-validation schemes: A comparison</h1>
<ul>
<li><p><span class="math inline">\(\textrm{CV}_{K}\)</span> gets more computationally demanding as <span class="math inline">\(K \rightarrow n\)</span></p></li>
<li><p>The bias of <span class="math inline">\(\textrm{CV}_{K}\)</span> goes down, but the variance increases as <span class="math inline">\(K \rightarrow n\)</span></p></li>
<li><p>The factorial version isn’t commonly used except when doing a ‘real’ data example for a methods paper</p></li>
<li><p>There are many other flavors of CV. One of them, called “consistent cross validation” is a recent addition that is designed to work with sparsifying algorithms</p></li>
<li><p><span class="math inline">\(K\)</span>-fold is most common (like <span class="math inline">\(K=10\)</span> or <span class="math inline">\(K=5\)</span>)</p></li>
</ul>
</div><div id="k-fold-cv" class="slide section level2">
<h1>K-fold CV</h1>
<ol style="list-style-type: decimal">
<li>Divide the data into <span class="math inline">\(K\)</span> groups.</li>
<li>Leave a group out and estimate with the rest.</li>
<li>Test on the held-out group. Calculate an average risk over these <span class="math inline">\(\sim n/K\)</span> data.</li>
<li>Repeat for all <span class="math inline">\(K\)</span> groups.</li>
<li>Average the average risks.</li>
</ol>
</div><div id="why-k-fold-better" class="slide section level2">
<h1>Why K-fold better?</h1>
<ol style="list-style-type: decimal">
<li>Less overlap, smaller covariance.</li>
<li>Larger hold-out sets, smaller variance.</li>
<li>Less computations (only need to estimate <span class="math inline">\(K\)</span> times)</li>
</ol>
</div><div id="why-might-it-be-worse" class="slide section level2">
<h1>Why might it be worse?</h1>
<ol style="list-style-type: decimal">
<li>LOO-CV is (nearly) unbiased.</li>
<li>The risk depends on how much data you use to estimate the model.</li>
<li>LOO-CV uses almost the same amount of data.</li>
</ol>
</div><div id="a-picture" class="slide section level2">
<h1>A picture</h1>
<p><img src="" width="960" style="display: block; margin: auto;" /></p>
</div><div id="comparison" class="slide section level2">
<h1>Comparison</h1>
<ul>
<li>LOO-CV and AIC are asymptotically equivalent <span class="math inline">\(p<n\)</span>, <span class="citation">(Stone 1977)</span></li>
<li>Properties of AIC/BIC in high dimensions are not well understood.</li>
<li>In low dimensions, AIC is minimax optimal for the prediction risk <span class="citation">(Yang and Barron 1998)</span></li>
<li>CV is consistent for the prediction risk <span class="citation">(Dudoit and Laan 2005)</span></li>
<li>Both tend to over-select predictors (unproven, except empirically)</li>
<li>BIC asymptotically selects the correct linear model in low dimensions <span class="citation">(Shao 1997)</span> and in high dimensions <span class="citation">(Wang, Li, and Leng 2009)</span></li>
<li>In linear regression, it is impossible for a model selection criterion to be minimax optimal and select the correct model asymptotically <span class="citation">(Yang 2005)</span></li>
<li>In high dimensions, if the variance is unknown, the “known” variance form of AIC/BIC is disastrous.</li>
<li><strong>Conclusion:</strong> your choice of risk estimator impacts results. Thus,
<ol style="list-style-type: decimal">
<li>If you want to select models, you might pick BIC</li>
<li>If you want good predictions, you might use CV</li>
<li>It’s possible LASSO+CV(1se) picks models better than LASSO+CV(min)</li>
</ol></li>
</ul>
</div><div id="some-lessons-from-my-work" class="slide section level2">
<h1>Some lessons from my work</h1>
<ul>
<li>The form of AIC I gave you <strong>doesn’t</strong> work in high dimensions because you can drive RSS to zero.</li>
<li>You need to use a high-dimensional variance estimator instead <span class="citation">(Homrighausen and McDonald 2018)</span></li>
<li>LASSO + CV “works” in high dimensions (not LOO, but no one uses it)</li>
<li>Under <em>very</em> strong conditions it selects the right model at the right rate.</li>
<li>Under weaker conditions, it achieves (nearly) minimax optimal prediction risk. <span class="citation">(Homrighausen and McDonald 2013, 2014, 2017)</span></li>
</ul>
</div><div id="aicbic-disaster" class="slide section level2">
<h1>AIC/BIC disaster</h1>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1">n =<span class="st"> </span><span class="dv">30</span>; p =<span class="st"> </span><span class="dv">150</span></a>
<a class="sourceLine" id="cb1-2" data-line-number="2">sigma =<span class="st"> </span><span class="kw">c</span>(.<span class="dv">5</span>, <span class="dv">1</span>, <span class="fl">1.5</span>, <span class="dv">5</span>)</a>
<a class="sourceLine" id="cb1-3" data-line-number="3">beta =<span class="st"> </span><span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">0</span>, ..., <span class="dv">0</span>)</a>
<a class="sourceLine" id="cb1-4" data-line-number="4">Y =<span class="st"> </span>X <span class="op">%*%</span><span class="st"> </span>beta <span class="op">+</span><span class="st"> </span>sigma <span class="op">*</span><span class="st"> </span><span class="kw">rnorm</span>(n, <span class="dt">sd=</span>sigma)</a></code></pre></div>
<p><img src="" /></p>
</div>
<div id="brief-foray-into-model-averaging" class="title-slide slide section level1"><h1>(Brief) foray into model averaging</h1></div><div id="what-if-we-dont-want-to-choose" class="slide section level2">
<h1>What if we don’t want to choose?</h1>
<ol style="list-style-type: decimal">
<li>Choose a risk estimator <span class="math inline">\(\widehat{R}\)</span></li>
<li>Calculate weights <span class="math inline">\(p_i = \exp\left\{-\widehat{R}(\textrm{Model}_i)\right\}\)</span></li>
<li>Create final estimator <span class="math inline">\(\widehat{f} = \sum_{\textrm{models}} \frac{p_i}{\sum p_i} \widehat{f}_i\)</span>.</li>
</ol>
<ul>
<li>If <span class="math inline">\(\widehat{R}\)</span> is BIC, this is (poor-man’s) Bayesian Model Averaging.</li>
<li>Real BMA integrates over the models: <span class="math display">\[P(f \ \vert\ \mathcal{D}) = \int P(f \ \vert\ M_i, \mathcal{D}) P(M_i \ \vert\ \mathcal{D}) dM\]</span></li>
<li>Averaging + Sparsity is pretty hard.</li>
<li>Interesting open problem: how can we combine LASSO models over the path?</li>
<li>Issue with MA: <span class="math inline">\(e^{-BIC}\)</span> can be tiny for all but a few models. You’re not averaging anymore.</li>
</ul>
</div><div id="selected-references" class="slide section level2 unnumbered">
<h1>Selected references</h1>
<div id="refs" class="references">
<div id="ref-Dudoit2005">
<p>Dudoit, Sandrine, and Mark J. van der Laan. 2005. “Asymptotics of Cross-Validation Risk Estimation in Estimator Selection and Performance Assessment.” <em>Statistical Methodology</em>, 131–54.</p>
</div>
<div id="ref-HomrighausenMcDonald2013">
<p>Homrighausen, Darren, and Daniel J. McDonald. 2013. “The Lasso, Persistence, and Cross-Validation.” In <em>Proceedings of the <span class="math inline">\(30^{th}\)</span> International Conference on Machine Learning (Icml)</em>, edited by Sanjoy Dasgupta and David McAllester, 28:1031–9. PMLR.</p>
</div>
<div id="ref-HomrighausenMcDonald2014">
<p>———. 2014. “Leave-One-Out Cross-Validation Is Risk Consistent for Lasso.” <em>Machine Learning</em> 97 (1-2): 65–78.</p>
</div>