-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_single_atari.py
200 lines (161 loc) · 6.7 KB
/
train_single_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
from collections import deque
from typing import List
import numpy as np
import torch
import wandb
from level_replay import utils
from level_replay.algo.buffer import make_buffer
from level_replay.algo.policy import DQNAgent
from level_replay.atari_args import parser
os.environ["OMP_NUM_THREADS"] = "1"
last_checkpoint_time = None
def train(args):
args.num_processes = 1
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.device = torch.device("cuda:0" if args.cuda else "cpu")
if "cuda" in args.device.type:
print("Using CUDA\n")
args.optimizer_parameters = {"lr": args.learning_rate, "eps": args.adam_eps}
args.seeds = None
args.sge_job_id = int(os.environ.get("JOB_ID", -1))
args.sge_task_id = int(os.environ.get("SGE_TASK_ID", -1))
torch.set_num_threads(1)
utils.seed(args.seed)
wandb.init(
settings=wandb.Settings(start_method="fork"),
project=args.wandb_project,
entity="andyehrenberg",
config=vars(args),
tags=["ddqn", "procgen"] + (args.wandb_tags.split(",") if args.wandb_tags else []),
group=args.wandb_group,
)
wandb.run.name = (
f"dqn-{args.env_name}"
+ f"{'-PER' if args.PER else ''}"
+ f"{'-dueling' if args.dueling else ''}"
+ f"{'-CQL' if args.cql else ''}"
+ f"{'-qrdqn' if args.qrdqn else ''}"
+ f"{'-c51' if args.c51 else ''}"
+ f"{'-noisylayers' if args.noisy_layers else ''}"
)
atari_preprocessing = {
"frame_skip": 4,
"frame_size": 84,
"state_history": 4,
"done_on_life_loss": False,
"reward_clipping": True,
"max_episode_timesteps": 27e3,
}
env, state_dim, num_actions = utils.make_env(args.env_name, atari_preprocessing)
replay_buffer = make_buffer(args, env, atari=True)
agent = DQNAgent(args, env)
state_deque: deque = deque(maxlen=args.multi_step)
reward_deque: deque = deque(maxlen=args.multi_step)
action_deque: deque = deque(maxlen=args.multi_step)
num_steps = int(args.T_max)
epsilon_start = 1.0
epsilon_final = args.end_eps
epsilon_decay = args.eps_decay_period
def epsilon(t):
return epsilon_final + (epsilon_start - epsilon_final) * np.exp(
-1.0 * (t - args.start_timesteps) / epsilon_decay
)
state, done = env.reset(), False
state = (torch.FloatTensor(state) / 255.0).to(args.device)
episode_reward = 0
episode_timesteps = 0
episode_num = 0
for t in range(num_steps):
episode_timesteps += 1
if t < args.start_timesteps or np.random.uniform() < epsilon(t):
action = torch.LongTensor([env.action_space.sample()]).reshape(-1, 1).to(args.device)
else:
action, _ = agent.select_action(state.unsqueeze(0))
# Perform action and log results
next_state, reward, done, info = env.step(action)
next_state = (torch.FloatTensor(next_state) / 255.0).to(args.device)
episode_reward += reward
state_deque.append(state)
reward_deque.append(reward)
action_deque.append(action)
if len(state_deque) == args.multi_step or done:
n_reward = multi_step_reward(reward_deque, args.gamma)
n_state = state_deque[0]
n_action = action_deque[0]
replay_buffer.add(n_state, n_action, next_state, n_reward, np.uint8(done), np.array([0]))
if done:
reward_deque_i = list(reward_deque)
for j in range(1, len(reward_deque_i)):
n_reward = multi_step_reward(reward_deque_i[j:], args.gamma)
n_state = state_deque[j]
n_action = action_deque[j]
replay_buffer.add(
n_state,
n_action,
next_state,
n_reward,
np.uint8(done),
np.array([0]),
)
state = next_state
if done:
wandb.log({"Train Episode Returns": episode_reward}, step=t)
state, done = env.reset(), False
state = (torch.FloatTensor(state) / 255.0).to(args.device)
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Train agent after collecting sufficient data
if (t + 1) % args.train_freq == 0 and t >= args.start_timesteps:
loss, grad_magnitude = agent.train(replay_buffer)
wandb.log({"Value Loss": loss, "Gradient magnitude": grad_magnitude}, step=t)
if t % 10000 == 0:
effective_rank = agent.Q.effective_rank()
wandb.log({"Effective Rank of DQN": effective_rank}, step=t)
if (t >= args.start_timesteps and (t + 1) % args.eval_freq == 0) or t == num_steps - 1:
eval_episode_rewards = eval_policy(args, agent)
wandb.log({"Evaluation Returns": np.mean(eval_episode_rewards)}, step=t)
def eval_policy(args, policy, num_episodes=10):
atari_preprocessing = {
"frame_skip": 4,
"frame_size": 84,
"state_history": 4,
"done_on_life_loss": False,
"reward_clipping": True,
"max_episode_timesteps": 27e3,
}
eval_env, _, _ = utils.make_env(args.env_name, atari_preprocessing, record_runs=True)
eval_env.seed(args.seed + 100)
eval_episode_rewards: List[float] = []
state, done = eval_env.reset(), False
state = (torch.FloatTensor(state) / 255.0).to(args.device)
episode_returns = 0
while len(eval_episode_rewards) < num_episodes:
if np.random.uniform() < args.eval_eps:
action = torch.LongTensor([eval_env.action_space.sample()]).reshape(-1, 1).to(args.device)
else:
with torch.no_grad():
action, _ = policy.select_action(state.unsqueeze(0), eval=True)
state, reward, done, info = eval_env.step(action)
state = (torch.FloatTensor(state) / 255.0).to(args.device)
episode_returns += reward
if done:
eval_episode_rewards.append(episode_returns)
episode_returns = 0
state, done = eval_env.reset(), False
state = (torch.FloatTensor(state) / 255.0).to(args.device)
avg_reward = sum(eval_episode_rewards) / len(eval_episode_rewards)
print("---------------------------------------")
print(f"Evaluation over {num_episodes} episodes: {avg_reward}")
print("---------------------------------------")
return eval_episode_rewards
def multi_step_reward(rewards, gamma):
ret = 0.0
for idx, reward in enumerate(rewards):
ret += reward * (gamma ** idx)
return ret
if __name__ == "__main__":
args = parser.parse_args()
print(args)
train(args)