-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathhuffman.go
653 lines (594 loc) · 11.6 KB
/
huffman.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
package brotli
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Utilities for building Huffman decoding tables. */
const huffmanMaxCodeLength = 15
/* Maximum possible Huffman table size for an alphabet size of (index * 32),
max code length 15 and root table bits 8. */
var kMaxHuffmanTableSize = []uint16{
256,
402,
436,
468,
500,
534,
566,
598,
630,
662,
694,
726,
758,
790,
822,
854,
886,
920,
952,
984,
1016,
1048,
1080,
1112,
1144,
1176,
1208,
1240,
1272,
1304,
1336,
1368,
1400,
1432,
1464,
1496,
1528,
}
/* BROTLI_NUM_BLOCK_LEN_SYMBOLS == 26 */
const huffmanMaxSize26 = 396
/* BROTLI_MAX_BLOCK_TYPE_SYMBOLS == 258 */
const huffmanMaxSize258 = 632
/* BROTLI_MAX_CONTEXT_MAP_SYMBOLS == 272 */
const huffmanMaxSize272 = 646
const huffmanMaxCodeLengthCodeLength = 5
/* Do not create this struct directly - use the ConstructHuffmanCode
* constructor below! */
type huffmanCode struct {
bits byte
value uint16
}
func constructHuffmanCode(bits byte, value uint16) huffmanCode {
var h huffmanCode
h.bits = bits
h.value = value
return h
}
/* Builds Huffman lookup table assuming code lengths are in symbol order. */
/* Builds Huffman lookup table assuming code lengths are in symbol order.
Returns size of resulting table. */
/* Builds a simple Huffman table. The |num_symbols| parameter is to be
interpreted as follows: 0 means 1 symbol, 1 means 2 symbols,
2 means 3 symbols, 3 means 4 symbols with lengths [2, 2, 2, 2],
4 means 4 symbols with lengths [1, 2, 3, 3]. */
/* Contains a collection of Huffman trees with the same alphabet size. */
/* max_symbol is needed due to simple codes since log2(alphabet_size) could be
greater than log2(max_symbol). */
type huffmanTreeGroup struct {
htrees [][]huffmanCode
codes []huffmanCode
alphabet_size uint16
max_symbol uint16
num_htrees uint16
}
const reverseBitsMax = 8
const reverseBitsBase = 0
var kReverseBits = [1 << reverseBitsMax]byte{
0x00,
0x80,
0x40,
0xC0,
0x20,
0xA0,
0x60,
0xE0,
0x10,
0x90,
0x50,
0xD0,
0x30,
0xB0,
0x70,
0xF0,
0x08,
0x88,
0x48,
0xC8,
0x28,
0xA8,
0x68,
0xE8,
0x18,
0x98,
0x58,
0xD8,
0x38,
0xB8,
0x78,
0xF8,
0x04,
0x84,
0x44,
0xC4,
0x24,
0xA4,
0x64,
0xE4,
0x14,
0x94,
0x54,
0xD4,
0x34,
0xB4,
0x74,
0xF4,
0x0C,
0x8C,
0x4C,
0xCC,
0x2C,
0xAC,
0x6C,
0xEC,
0x1C,
0x9C,
0x5C,
0xDC,
0x3C,
0xBC,
0x7C,
0xFC,
0x02,
0x82,
0x42,
0xC2,
0x22,
0xA2,
0x62,
0xE2,
0x12,
0x92,
0x52,
0xD2,
0x32,
0xB2,
0x72,
0xF2,
0x0A,
0x8A,
0x4A,
0xCA,
0x2A,
0xAA,
0x6A,
0xEA,
0x1A,
0x9A,
0x5A,
0xDA,
0x3A,
0xBA,
0x7A,
0xFA,
0x06,
0x86,
0x46,
0xC6,
0x26,
0xA6,
0x66,
0xE6,
0x16,
0x96,
0x56,
0xD6,
0x36,
0xB6,
0x76,
0xF6,
0x0E,
0x8E,
0x4E,
0xCE,
0x2E,
0xAE,
0x6E,
0xEE,
0x1E,
0x9E,
0x5E,
0xDE,
0x3E,
0xBE,
0x7E,
0xFE,
0x01,
0x81,
0x41,
0xC1,
0x21,
0xA1,
0x61,
0xE1,
0x11,
0x91,
0x51,
0xD1,
0x31,
0xB1,
0x71,
0xF1,
0x09,
0x89,
0x49,
0xC9,
0x29,
0xA9,
0x69,
0xE9,
0x19,
0x99,
0x59,
0xD9,
0x39,
0xB9,
0x79,
0xF9,
0x05,
0x85,
0x45,
0xC5,
0x25,
0xA5,
0x65,
0xE5,
0x15,
0x95,
0x55,
0xD5,
0x35,
0xB5,
0x75,
0xF5,
0x0D,
0x8D,
0x4D,
0xCD,
0x2D,
0xAD,
0x6D,
0xED,
0x1D,
0x9D,
0x5D,
0xDD,
0x3D,
0xBD,
0x7D,
0xFD,
0x03,
0x83,
0x43,
0xC3,
0x23,
0xA3,
0x63,
0xE3,
0x13,
0x93,
0x53,
0xD3,
0x33,
0xB3,
0x73,
0xF3,
0x0B,
0x8B,
0x4B,
0xCB,
0x2B,
0xAB,
0x6B,
0xEB,
0x1B,
0x9B,
0x5B,
0xDB,
0x3B,
0xBB,
0x7B,
0xFB,
0x07,
0x87,
0x47,
0xC7,
0x27,
0xA7,
0x67,
0xE7,
0x17,
0x97,
0x57,
0xD7,
0x37,
0xB7,
0x77,
0xF7,
0x0F,
0x8F,
0x4F,
0xCF,
0x2F,
0xAF,
0x6F,
0xEF,
0x1F,
0x9F,
0x5F,
0xDF,
0x3F,
0xBF,
0x7F,
0xFF,
}
const reverseBitsLowest = (uint64(1) << (reverseBitsMax - 1 + reverseBitsBase))
/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
where reverse(value, len) is the bit-wise reversal of the len least
significant bits of value. */
func reverseBits8(num uint64) uint64 {
return uint64(kReverseBits[num])
}
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
/* Assumes that end is an integer multiple of step */
func replicateValue(table []huffmanCode, step int, end int, code huffmanCode) {
for {
end -= step
table[end] = code
if end <= 0 {
break
}
}
}
/* Returns the table width of the next 2nd level table. |count| is the histogram
of bit lengths for the remaining symbols, |len| is the code length of the
next processed symbol. */
func nextTableBitSize(count []uint16, len int, root_bits int) int {
var left int = 1 << uint(len-root_bits)
for len < huffmanMaxCodeLength {
left -= int(count[len])
if left <= 0 {
break
}
len++
left <<= 1
}
return len - root_bits
}
func buildCodeLengthsHuffmanTable(table []huffmanCode, code_lengths []byte, count []uint16) {
var code huffmanCode /* current table entry */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* step size to replicate values in current table */ /* size of current table */ /* symbols sorted by code length */
var symbol int
var key uint64
var key_step uint64
var step int
var table_size int
var sorted [codeLengthCodes]int
var offset [huffmanMaxCodeLengthCodeLength + 1]int
var bits int
var bits_count int
/* offsets in sorted table for each length */
assert(huffmanMaxCodeLengthCodeLength <= reverseBitsMax)
/* Generate offsets into sorted symbol table by code length. */
symbol = -1
bits = 1
var i int
for i = 0; i < huffmanMaxCodeLengthCodeLength; i++ {
symbol += int(count[bits])
offset[bits] = symbol
bits++
}
/* Symbols with code length 0 are placed after all other symbols. */
offset[0] = codeLengthCodes - 1
/* Sort symbols by length, by symbol order within each length. */
symbol = codeLengthCodes
for {
var i int
for i = 0; i < 6; i++ {
symbol--
sorted[offset[code_lengths[symbol]]] = symbol
offset[code_lengths[symbol]]--
}
if symbol == 0 {
break
}
}
table_size = 1 << huffmanMaxCodeLengthCodeLength
/* Special case: all symbols but one have 0 code length. */
if offset[0] == 0 {
code = constructHuffmanCode(0, uint16(sorted[0]))
for key = 0; key < uint64(table_size); key++ {
table[key] = code
}
return
}
/* Fill in table. */
key = 0
key_step = reverseBitsLowest
symbol = 0
bits = 1
step = 2
for {
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
code = constructHuffmanCode(byte(bits), uint16(sorted[symbol]))
symbol++
replicateValue(table[reverseBits8(key):], step, table_size, code)
key += key_step
}
step <<= 1
key_step >>= 1
bits++
if bits > huffmanMaxCodeLengthCodeLength {
break
}
}
}
func buildHuffmanTable(root_table []huffmanCode, root_bits int, symbol_lists symbolList, count []uint16) uint32 {
var code huffmanCode /* current table entry */ /* next available space in table */ /* current code length */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* 2nd level table prefix code */ /* 2nd level table prefix code addend */ /* step size to replicate values in current table */ /* key length of current table */ /* size of current table */ /* sum of root table size and 2nd level table sizes */
var table []huffmanCode
var len int
var symbol int
var key uint64
var key_step uint64
var sub_key uint64
var sub_key_step uint64
var step int
var table_bits int
var table_size int
var total_size int
var max_length int = -1
var bits int
var bits_count int
assert(root_bits <= reverseBitsMax)
assert(huffmanMaxCodeLength-root_bits <= reverseBitsMax)
for symbolListGet(symbol_lists, max_length) == 0xFFFF {
max_length--
}
max_length += huffmanMaxCodeLength + 1
table = root_table
table_bits = root_bits
table_size = 1 << uint(table_bits)
total_size = table_size
/* Fill in the root table. Reduce the table size to if possible,
and create the repetitions by memcpy. */
if table_bits > max_length {
table_bits = max_length
table_size = 1 << uint(table_bits)
}
key = 0
key_step = reverseBitsLowest
bits = 1
step = 2
for {
symbol = bits - (huffmanMaxCodeLength + 1)
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
symbol = int(symbolListGet(symbol_lists, symbol))
code = constructHuffmanCode(byte(bits), uint16(symbol))
replicateValue(table[reverseBits8(key):], step, table_size, code)
key += key_step
}
step <<= 1
key_step >>= 1
bits++
if bits > table_bits {
break
}
}
/* If root_bits != table_bits then replicate to fill the remaining slots. */
for total_size != table_size {
copy(table[table_size:], table[:uint(table_size)])
table_size <<= 1
}
/* Fill in 2nd level tables and add pointers to root table. */
key_step = reverseBitsLowest >> uint(root_bits-1)
sub_key = reverseBitsLowest << 1
sub_key_step = reverseBitsLowest
len = root_bits + 1
step = 2
for ; len <= max_length; len++ {
symbol = len - (huffmanMaxCodeLength + 1)
for ; count[len] != 0; count[len]-- {
if sub_key == reverseBitsLowest<<1 {
table = table[table_size:]
table_bits = nextTableBitSize(count, int(len), root_bits)
table_size = 1 << uint(table_bits)
total_size += table_size
sub_key = reverseBits8(key)
key += key_step
root_table[sub_key] = constructHuffmanCode(byte(table_bits+root_bits), uint16(uint64(uint(-cap(table)+cap(root_table)))-sub_key))
sub_key = 0
}
symbol = int(symbolListGet(symbol_lists, symbol))
code = constructHuffmanCode(byte(len-root_bits), uint16(symbol))
replicateValue(table[reverseBits8(sub_key):], step, table_size, code)
sub_key += sub_key_step
}
step <<= 1
sub_key_step >>= 1
}
return uint32(total_size)
}
func buildSimpleHuffmanTable(table []huffmanCode, root_bits int, val []uint16, num_symbols uint32) uint32 {
var table_size uint32 = 1
var goal_size uint32 = 1 << uint(root_bits)
switch num_symbols {
case 0:
table[0] = constructHuffmanCode(0, val[0])
case 1:
if val[1] > val[0] {
table[0] = constructHuffmanCode(1, val[0])
table[1] = constructHuffmanCode(1, val[1])
} else {
table[0] = constructHuffmanCode(1, val[1])
table[1] = constructHuffmanCode(1, val[0])
}
table_size = 2
case 2:
table[0] = constructHuffmanCode(1, val[0])
table[2] = constructHuffmanCode(1, val[0])
if val[2] > val[1] {
table[1] = constructHuffmanCode(2, val[1])
table[3] = constructHuffmanCode(2, val[2])
} else {
table[1] = constructHuffmanCode(2, val[2])
table[3] = constructHuffmanCode(2, val[1])
}
table_size = 4
case 3:
var i int
var k int
for i = 0; i < 3; i++ {
for k = i + 1; k < 4; k++ {
if val[k] < val[i] {
var t uint16 = val[k]
val[k] = val[i]
val[i] = t
}
}
}
table[0] = constructHuffmanCode(2, val[0])
table[2] = constructHuffmanCode(2, val[1])
table[1] = constructHuffmanCode(2, val[2])
table[3] = constructHuffmanCode(2, val[3])
table_size = 4
case 4:
if val[3] < val[2] {
var t uint16 = val[3]
val[3] = val[2]
val[2] = t
}
table[0] = constructHuffmanCode(1, val[0])
table[1] = constructHuffmanCode(2, val[1])
table[2] = constructHuffmanCode(1, val[0])
table[3] = constructHuffmanCode(3, val[2])
table[4] = constructHuffmanCode(1, val[0])
table[5] = constructHuffmanCode(2, val[1])
table[6] = constructHuffmanCode(1, val[0])
table[7] = constructHuffmanCode(3, val[3])
table_size = 8
}
for table_size != goal_size {
copy(table[table_size:], table[:uint(table_size)])
table_size <<= 1
}
return goal_size
}