-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
158 lines (127 loc) · 5.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''spark entry for metric engine'''
import argparse
import os
from datetime import datetime
from pyspark import SparkConf, SparkFiles
from pyspark.sql import SparkSession
import yaml
import merlin.engines.context as ctx
from merlin.engines.spark_bigquery import SparkBigQuery
from merlin.engines.spark_stand_alone import SparkStandAlone
from merlin.parser import MetricParser
def get_engine(engine_type, definitions, spark, options, configs):
context = ctx.Context(metric_definitions=definitions,
env="test",
metric_table="metrics",
metric_data_store="test",
reader=None,
writer=None,
compute_datetime=datetime.now(),
store=None
)
if engine_type == "spark_stand_alone":
spark_config = configs["spark_stand_alone"]
context.reader = ctx.Reader(
user=None,
password=None,
uri=None,
reader_type=ctx.ReaderType.SPARK_NATIVE
)
context.writer = ctx.Writer(
uri=spark_config["writer"]["bucket"] if "writer" in spark_config and "bucket" else None
)
engine = SparkStandAlone(context=context, spark_session=spark)
elif engine_type == "big_query":
bq_config = configs["big_query"]
context.reader = ctx.Reader(
user=None,
password=None,
uri=None,
client=None, # Pass the client if the keyfile is not null
reader_type=ctx.ReaderType.BIGQUERY,
options=options
)
context.writer = ctx.Writer(
uri=bq_config["writer"]["bucket"] if "writer" in bq_config else None
)
context.store = ctx.Store(
metrics=bq_config["store"]["metrics"] if "store" in bq_config else None,
cache=bq_config["store"]["cache"] if "store" in bq_config else None
)
engine = SparkBigQuery(context=context, spark_session=spark)
else:
raise Exception("Unsupported engine")
return engine
def bool_parse(arg: str):
return arg.lower() == "true"
def get_argparser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Metric Engine")
parser.add_argument("--metric_db", help="Metric database",
type=str, nargs="?", required=True)
parser.add_argument("--sql_archive", help="SQL definition zip",
type=str, nargs="?", required=True)
parser.add_argument("--pymod_archive", help="SQL definition zip",
type=str, nargs="?", required=False)
parser.add_argument("--keyfile", type=str, nargs="?", required=False)
parser.add_argument("--configs", type=str, nargs="?", required=False)
parser.add_argument("--dt_start", type=str, nargs="?", required=True)
parser.add_argument("--dt_end", type=str, nargs="?", required=True)
parser.add_argument("--gcs_temp_bucket", type=str,
nargs="?", required=False)
parser.add_argument("--k8s_chdir", type=bool_parse,
required=False, default="False")
parser.add_argument("--engine", type=str, required=False, default="False")
return parser
def get_spark_session(keyfile=None, chdir=False, gcs_temp_bucket=None) -> SparkSession:
conf = SparkConf().setAppName("Metric Engine").set("spark.scheduler.mode", "FAIR")
if gcs_temp_bucket is not None:
conf = conf.set('temporaryGcsBucket', gcs_temp_bucket)
conf = conf.set("spark.hadoop.fs.gs.impl",
"com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem")
conf = conf.set("spark.hadoop.fs.AbstractFileSystem.gs.impl",
"com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS")
conf = conf.set(
'spark.hadoop.fs.gs.auth.service.account.enable', 'true')
if keyfile is not None:
conf = conf.set(
'spark.hadoop.google.cloud.auth.service.account.json.keyfile', keyfile)
spark = SparkSession.builder.config(
conf=conf).enableHiveSupport().getOrCreate()
if chdir:
os.chdir(SparkFiles.getRootDirectory())
return spark
def load_definition(metric_db, sql_archive, pymod_archive):
parser = MetricParser(metric_db, sql_archive, pymod_archive)
definitions = parser.load_metrics()
return definitions
def get_configs(file_name):
with open(file_name, 'r') as fh:
configs = yaml.load(fh, Loader=yaml.FullLoader)
return configs
if __name__ == '__main__':
args = get_argparser().parse_args()
spark = get_spark_session(
args.keyfile, args.k8s_chdir, args.gcs_temp_bucket)
definitions = load_definition(
args.metric_db, args.sql_archive, args.pymod_archive)
spark_session = get_spark_session()
configs = get_configs(args.configs)
options = {
'keyfile': args.keyfile
}
engine = get_engine(args.engine, definitions,
spark_session, options, configs)
for metric_def in definitions:
try:
partitions = engine.compute(metric_def)
except Exception as e:
print(e)
# raise(e)
continue
expected_keys = ['id', 'compute_date', 'compute_hour', 'horizontal_level',
'vertical_level']
for partition_records in partitions.values():
for row in partition_records:
print(row)
spark_session.stop()
# parser yaml -> create metric -> run stage