-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset03b-barrel-sparse-small.py
49 lines (38 loc) · 1.42 KB
/
dataset03b-barrel-sparse-small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python
# datasets for trainings starting from 2016-05-09
dataDesc = dict(
train_files = [ '../data/2016-05-larger-window/GJet20to40/rechits-barrel-train.t7',
'../data/2016-05-larger-window/GJet20toInf/rechits-barrel-train.t7',
'../data/2016-05-larger-window/GJet40toInf/rechits-barrel-train.t7'
],
test_files = [ '../data/2016-05-larger-window/GJet20to40/rechits-barrel-test.t7',
'../data/2016-05-larger-window/GJet20toInf/rechits-barrel-test.t7',
'../data/2016-05-larger-window/GJet40toInf/rechits-barrel-test.t7'
],
# input dimensions
nfeats = 1,
width = 7,
height = 23,
# for shifting 18,18 to 4,12
recHitsXoffset = -18 + 4,
recHitsYoffset = -18 + 12,
inputDataIsSparse = True,
# if one specifies nothing (or nil), the full sizes
# from the input samples are taken
#
# if one specifies values < 1 these are interpreted
# as fractions of the sample
# trsize, tesize = 10000, 1000
# trsize, tesize = 0.1, 0.1
# trsize, tesize = 0.01, 0.01
#
# limiting the size for the moment because
# with the full set we ran out of memory after training
# on the first epoch
# trsize, tesize = 0.5, 0.5
trsize = 0.05,
tesize = 0.05,
# trsize, tesize = 100, 100
# DEBUG
# trsize, tesize = 0.01, 0.01
)