-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
133 lines (97 loc) · 3.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import dill
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import contflame.data.datasets as datasets
import torch
from torch import nn
from contflame.data.utils import MultiLoader
from torch.utils.data import DataLoader
import models
def train(model, optimizer, criterion, train_loader, config):
model.train()
correct = 0
loss_sum = 0
tot = 0
for step, (data, targets) in enumerate(train_loader):
data = data.to(config['device'])
targets = targets.to(config['device'])
optimizer.zero_grad()
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, dim=1)
loss_sum += loss.item() * data.size(0)
tot += data.size(0)
correct += preds.eq(targets).sum().item()
accuracy = correct / tot
loss = loss_sum / tot
return loss, accuracy
def test(model, criterion, test_loader, config):
model.eval()
correct = 0
loss_sum = 0
tot = 0
for step, (data, targets) in enumerate(test_loader):
data = data.to(config['device'])
targets = targets.to(config['device'])
with torch.no_grad():
outputs = model(data)
loss = criterion(outputs, targets)
_, preds = torch.max(outputs, dim=1)
loss_sum += loss.item() * data.size(0)
tot += data.size(0)
correct += preds.eq(targets).sum().item()
accuracy = correct / tot
loss = loss_sum / tot
return loss, accuracy
w = 0
def print_images(imgs, trgs, mean, std):
global w
for img, trg in zip(imgs, trgs):
print(trg)
std = [std[0] for _ in range(img.size(0))] if len(std) == 1 else std
mean = [mean[0] for _ in range(img.size(0))] if len(mean) == 1 else mean
for i in range(img.size(0)):
img[i] = img[i] * std[i] + mean[i]
img = img * 255
img = img.cpu().detach().numpy()
img = np.transpose(img, (1, 2, 0))
img = np.squeeze(img)
img = img.astype(np.uint8)
plt.imsave(f'./img{w}.png', img)
w += 1
if __name__ == '__main__':
with open('distill6', 'rb') as file:
checkpoint = dill.load(file)
config = checkpoint['config']
run_config = config['run_config']
model_config = config['model_config']
param_config = config['param_config']
data_config = config['data_config']
log_config = config['log_config']
criterion = nn.CrossEntropyLoss()
net = getattr(models, model_config['arch']).Model(model_config)
net.load_state_dict(checkpoint['init'])
net.to(run_config['device'])
Dataset = getattr(datasets, data_config['dataset'])
testset = Dataset(dset='test', transform=data_config['test_transform'])
testloader = DataLoader(testset, batch_size=256, shuffle=False, pin_memory=True, num_workers=data_config['num_workers'])
buffer = checkpoint['dataset']
lrs = checkpoint['lrs']
bufferloader = MultiLoader([buffer], batch_size=len(buffer))
mean, std = data_config['test_transform'].transforms[-1].mean, data_config['test_transform'].transforms[-1].std
for x, y in bufferloader:
print_images(x, y, mean, std)
for epoch in range(param_config['epochs']):
lr = lrs[epoch] if epoch < len(lrs) else lrs[-1]
optimizer = torch.optim.SGD(net.parameters(), lr=np.log(1 + np.exp(lr)), )
buffer_loss, buffer_accuracy = train(net, optimizer, criterion, bufferloader, run_config)
test_loss, test_accuracy = test(net, criterion, testloader, run_config)
metrics = {f'Test loss': test_loss,
f'Test accuracy': test_accuracy,
f'Buffer loss': buffer_loss,
f'Buffer accuracy': buffer_accuracy,
f'Epoch': epoch}
print(metrics)