-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcello.nim
1012 lines (899 loc) · 26.6 KB
/
cello.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017 UniCredit S.p.A.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bitops, math, sequtils, strutils, algorithm, tables, random, std/editdistance
import spills
type AnyString* = string or seq[char] or Spill[char]
const minusOne = not(0'u)
proc rank*[T](s: set[T], i: T): int =
for j in T(0) ..< i:
if s.contains(j):
inc result
proc select*[T](s: set[T], i: int): T =
var count = 0
while count < i:
if s.contains(result):
inc count
inc result
proc rank*(s: AnyString, c: char, i: int): int =
for j in 0 ..< i:
if s[j] == c:
inc result
proc select*(s: AnyString, c: char, i: int): int =
var count = 0
while count < i:
if s[result] == c:
inc count
inc result
type BitArray* = ref object
data: seq[uint]
proc bits*(k: int): BitArray =
const L = sizeof(int) * 8
let r = k div L + (if k mod L == 0: 0 else: 1)
result = BitArray(data: newSeq[uint](r))
# shallow(result.data)
proc len*(bits: BitArray): int =
bits.data.len * sizeof(int) * 8
proc `[]`*(b: uint, i: int): bool {.inline.} =
((b shr i) mod 2) != 0
proc `[]`*(bits: BitArray, i: int): bool {.inline.} =
const L = sizeof(int) * 8
let
b = bits.data[i div L]
j = i mod L
return b[j]
proc `[]=`*(bits: var BitArray, i: int, v: bool) {.inline.} =
const L = sizeof(int) * 8
let
j = i mod L
k = i div L
p = 1'u shl j
if v:
bits.data[k] = bits.data[k] or p
else:
bits.data[k] = bits.data[k] and (not p)
template contains*(bits: BitArray, i: int): bool = bits[i]
template incl*(bits: var BitArray, i: int) =
bits[i] = true
proc bits*(xs: varargs[Slice[int]]): BitArray =
var m = 0
for x in xs:
m = max(m, x.b)
result = bits(m.int.nextPowerOfTwo)
for x in xs:
for y in x:
result.incl(y)
proc rank*(t: uint, i: int): auto =
const L = sizeof(int) * 8
if i == 0:
return 0
if i >= L:
return countSetBits(t)
let mask = minusOne shr (L - i)
return countSetBits(mask and t)
proc rank*(s: BitArray, i: int): int =
const L = sizeof(int) * 8
let
j = i mod L
k = i div L
for r in 0 ..< k:
result += countSetBits(s.data[r])
result += rank(s.data[k], j)
proc select*(t: uint, i: int): int =
var
t1 = t
i1 = i
if i > countSetBits(t):
return 0
while i1 > 0 and t1 != 0:
let s = countTrailingZeroBits(t1) + 1
t1 = t1 shr s
result += s
dec i1
proc select*(s: BitArray, i: int): int =
const L = sizeof(int) * 8
var
r = i
count = 0
while count < s.data.len:
let p = countSetBits(s.data[count])
if r <= p:
break
r -= p
inc count
return (count * L) + select(s.data[count], r)
proc select0*(s: BitArray, i: int): int =
const L = sizeof(int) * 8
var
r = i
count = 0
while count < s.data.len:
let p = L - countSetBits(s.data[count])
if r <= p:
break
r -= p
inc count
return (count * L) + select(not s.data[count], r)
proc naiveRank*(b: BitArray, i: int): int =
for j in 0 ..< i:
if b[j]:
inc result
proc naiveSelect*(b: BitArray, i: int): int =
var count = 0
while count < i:
if b.contains(result):
inc count
inc result
proc naiveSelect0*(b: BitArray, i: int): int =
var count = 0
while count < i:
if not b.contains(result):
inc count
inc result
proc bin*(t: uint): string =
const L = sizeof(uint) * 8
result = ""
for i in 1 .. L:
if t[L - i]:
result &= '1'
else:
result &= '0'
proc `$`*(b: BitArray): string =
const zeroString = bin(0)
let blocks = b.data.map(bin).reversed
var
nonZero = false
bs = newSeq[string]()
for blk in blocks:
if blk != zeroString:
nonZero = true
if nonZero:
bs.add(blk)
return join(bs, " ")
template nextPerm(v: int): auto =
let t = (v or (v - 1)) + 1
t or ((((t and -t) div (v and -v)) shr 1) - 1)
iterator blocks*(popcount, size: int): auto {.inline.} =
let
initial = (1 shl popcount) - 1
mask = (1 shl size) - 1
var v = initial
while v >= initial:
yield v.uint
v = nextPerm(v) and mask
type IntArray* = object
ba*: BitArray
size: int
length: int
proc capacity*(ints: IntArray): auto = ints.ba.len div ints.size
proc ints*(k, size: int): IntArray =
return IntArray(ba: bits(k * size), size: size, length: 0)
proc maxBits(n: uint): int = log2(n.float).int + 1
proc `[]`*(ints: IntArray, i: int): uint {.inline.} =
const L = sizeof(int) * 8
assert((i + 1) * ints.size <= ints.ba.len)
let
startBit = i * ints.size
startByte = startBit div L
startOffset = startBit - (startByte * L)
inSameWord = startOffset + ints.size <= L
if inSameWord:
let
word = ints.ba.data[startByte]
shifted = word shr startOffset
mask = minusOne shr (L - ints.size)
return shifted and mask
else:
let
endOffset = startOffset + ints.size - L
word1 = ints.ba.data[startByte]
word2 = ints.ba.data[startByte + 1]
shifted1 = word1 shr startOffset
mask = minusOne shr (L - endOffset)
shifted2 = (word2 and mask) shl (L - startOffset)
return shifted1 or shifted2
proc `[]=`*(ints: var IntArray, i: int, v: uint) {.inline.} =
const L = sizeof(int) * 8
assert((i + 1) * ints.size <= ints.ba.len)
#assert(v < 2 ^ ints.size)
let
startBit = i * ints.size
startByte = startBit div L
startOffset = startBit - (startByte * L)
inSameWord = startOffset + ints.size <= L
if inSameWord:
let
word = ints.ba.data[startByte]
shifted = v shl startOffset
mask = not ((minusOne shr (L - ints.size)) shl startOffset)
newWord = (word and mask) or shifted
ints.ba.data[startByte] = newWord
else:
let
endOffset = startOffset + ints.size - 1 - L
word1 = ints.ba.data[startByte]
mask1 = not (minusOne shl startOffset)
shifted1 = v shl startOffset
newWord1 = (word1 and mask1) or shifted1
word2 = ints.ba.data[startByte + 1]
mask2 = not (minusOne shr (L - endOffset))
shifted2 = v shr (L - startOffset)
newWord2 = (word2 and mask2) or shifted2
ints.ba.data[startByte] = newWord1
ints.ba.data[startByte + 1] = newWord2
ints.length = max(ints.length, i + 1)
proc ints*(xs: seq[uint]): IntArray =
result = ints(xs.len, maxBits(xs.max))
for i, x in xs:
result[i] = x
proc add*(ints: var IntArray, v: uint) =
ints[ints.length] = v
proc len*(ints: IntArray): int = ints.length
proc toIntSeq*(ints: IntArray): seq[uint] =
result = newSeq[uint](ints.length)
for i in 0 ..< ints.length:
result[i] = ints[i]
proc `$`*(ints: IntArray): string = $(ints.toIntSeq)
type
RRR* = ref object
ba: BitArray
index1, index2: IntArray
RRRStats* = object
data*, index1*, index2*: int
const
stepWidth = 64
step1 = sizeof(int) * 8 * stepWidth
step2 = sizeof(int) * 8
proc rrr*(ba: BitArray): RRR =
let L = ba.len
var
index1 = ints(L div step1 + 1, maxBits(L.uint))
index2 = ints(L div step2 + 1, maxBits(step1))
sum1 = 0'u
sum2 = 0'u
index1.add(0)
index2.add(0)
for i, cell in ba.data:
sum2 += countSetBits(cell).uint
if (i + 1) mod stepWidth == 0:
sum1 += sum2
index1.add(sum1)
sum2 = 0
index2.add(sum2)
return RRR(ba: ba, index1: index1, index2: index2)
proc stats*(r: RRR): RRRStats =
RRRStats(data: r.ba.len, index1: r.index1.ba.len, index2: r.index2.ba.len)
proc rank*(r: RRR, i: int): int =
return r.index1[i div step1].int + r.index2[i div step2].int + rank(r.ba.data[i div step2], i mod step2)
proc binarySearch(s: IntArray, value: uint, min, max: int): (int, uint) =
var
aMin = min
aMax = max
while aMin < aMax:
let
middle = (aMin + aMax) div 2
v = s[middle]
if v < value:
if aMin == middle:
aMax = middle
else:
aMin = middle
else:
aMax = middle
return (aMin, s[aMin])
proc binarySearch0(s: IntArray, value: uint, min, max, width: int): (int, int) =
var
aMin = min
aMax = max
while aMin < aMax:
let
middle = (aMin + aMax) div 2
v = (middle - min) * width - s[middle].int
if v < value.int:
if aMin == middle:
aMax = middle
else:
aMin = middle
else:
aMax = middle
return (aMin, (aMin - min) * width - s[aMin].int)
proc select*(r: RRR, i: int): int =
let
(i1, s1) = binarySearch(r.index1,
value = i.uint,
min = 0,
max = r.index1.length)
(i2, s2) = binarySearch(r.index2,
value = (i - s1.int).uint,
min = stepWidth * i1,
max = min(stepWidth * (i1 + 1 ), r.index2.length))
return step2 * i2 + select(r.ba.data[i2], i - s1.int - s2.int)
proc select0*(r: RRR, i: int): int =
let
(i1, s1) = binarySearch0(r.index1,
value = i.uint,
min = 0,
max = r.index1.length,
width = step1)
(i2, s2) = binarySearch0(r.index2,
value = (i - s1.int).uint,
min = stepWidth * i1,
max = min(stepWidth * (i1 + 1), r.index2.length),
width = step2)
return step2 * i2 + select(not r.ba.data[i2], i - s1 - s2)
type
WaveletTree* = ref object
alphabet*: seq[char]
len*: int
data*: RRR
left*, right*: WaveletTree
WaveletTreeStats* = object
data*, index1*, index2*, depth*: int
proc uniq*(content: AnyString): seq[char] =
result = @[]
for x in content:
if not result.contains(x):
result.add(x)
template split(alphabet: seq[char]): auto =
let L = high(alphabet) div 2
(alphabet[0 .. L], alphabet[L+1 .. high(alphabet)])
proc waveletTree*(content: AnyString, alphabet: seq[char]): WaveletTree =
if alphabet.len == 1:
return WaveletTree(alphabet: alphabet, len: content.len)
let (alphaLeft, alphaRight) = split(alphabet)
var
contentLeft = ""
contentRight = ""
b = bits(content.len)
for i, c in content:
if alphaLeft.contains(c):
contentLeft.add(c)
else:
incl(b, i)
contentRight.add(c)
let
left = waveletTree(contentLeft, alphaLeft)
right = waveletTree(contentRight, alphaRight)
data = rrr(b)
return WaveletTree(alphabet: alphabet, len: content.len, data: data, left: left, right: right)
proc waveletTree*(content: AnyString): WaveletTree =
waveletTree(content, uniq(content))
proc rank*(w: WaveletTree, c: char, t: int): auto =
if not w.alphabet.contains(c):
return -1
if w.alphabet.len == 1:
if t > w.len:
return -1
else:
return t
let (alphaLeft, alphaRight) = split(w.alphabet)
if alphaLeft.contains(c):
let r = t - w.data.rank(t)
return w.left.rank(c, r)
elif alphaRight.contains(c):
let r = w.data.rank(t)
return w.right.rank(c, r)
proc `[]`*(w: WaveletTree, t: int): char =
if w.alphabet.len == 1:
return w.alphabet[0]
let bit = w.data.ba[t]
if bit:
let r = w.data.rank(t)
return w.right[r]
else:
let r = t - w.data.rank(t)
return w.left[r]
proc select*(w: WaveletTree, c: char, t: int): auto =
if not w.alphabet.contains(c):
return -1
if w.alphabet.len == 1:
if t > w.len:
return -1
else:
return t
let (alphaLeft, alphaRight) = split(w.alphabet)
if alphaLeft.contains(c):
let r = w.left.select(c, t)
if r == -1:
return -1
return w.data.select0(r)
elif alphaRight.contains(c):
let r = w.right.select(c, t)
if r == -1:
return -1
return w.data.select(r)
proc stats*(w: WaveletTree): WaveletTreeStats =
if w.alphabet.len == 1:
return WaveletTreeStats(depth: 1)
let
left = stats(w.left)
right = stats(w.right)
s = stats(w.data)
return WaveletTreeStats(
depth: max(left.depth, right.depth) + 1,
data: left.data + right.data + s.data,
index1: left.index1 + right.index1 + s.index1,
index2: left.index2 + right.index2 + s.index2
)
type RotatedString* = object
underlying: string
shift: int
proc rotate*(s: string, i: int): RotatedString =
result = RotatedString(underlying: s, shift: i)
proc rotate*(s: var string, i: int): RotatedString =
result = RotatedString(shift: i)
shallowCopy(result.underlying, s)
proc `[]`*(r: RotatedString, i: int): char {.inline.} =
let L = r.underlying.len
assert 0 <= i and i < L
let s = i + r.shift
if s < L:
return r.underlying[s]
else:
return r.underlying[s - L]
proc `[]=`*(r: var RotatedString, i: int, c: char) {.inline.} =
let L = r.underlying.len
assert 0 <= i and i < L
let s = i + r.shift
if s < L:
r.underlying[s] = c
else:
r.underlying[s - L] = c
proc `$`*(r: RotatedString): string =
r.underlying[r.shift .. r.underlying.high] & r.underlying[0 ..< r.shift]
####################################################
const padding = 2
iterator samples(top: int): uint =
var i = 1
while i < top - padding:
yield i.uint
i += 3
i = 2
while i < top - padding:
yield i.uint
i += 3
proc radixPass(a: seq[uint], b: var seq[uint], reference: seq[uint], max: uint, offset: uint) =
var
bucketSizes = newSeq[int](max + 1)
bucketStart = newSeq[int](max + 1)
for i in a:
let digit = reference[i + offset]
inc bucketSizes[digit]
var total = 0
for i in 0 .. max.int:
bucketStart[i] = total
total += bucketSizes[i]
for c in a:
let
digit = reference[c + offset]
position = bucketStart[digit]
inc bucketStart[digit]
b[position] = c
proc dc3(xs: seq[uint]): seq[uint] =
var
sampleIndices = sequtils.toSeq(samples(xs.len))
scratchIndices = sampleIndices
let
L = sampleIndices.len
L2 = (L+1) div 2
L2u = L2.uint
m = xs.max
radixPass(sampleIndices, scratchIndices, xs, max = m, offset = 2)
radixPass(scratchIndices, sampleIndices, xs, max = m, offset = 1)
radixPass(sampleIndices, scratchIndices, xs, max = m, offset = 0)
# `scratchIndices` now contains the lexicographic order of
# triplets starting from indices in the sample set C = { x | x mod 3 != 0 }
var
lastTriplet = [minusOne, minusOne, minusOne]
count = 0'u
R12 = newSeq[uint](L)
SA12 = newSeq[uint](L)
for i, c in scratchIndices:
let triplet = [xs[c], xs[c+1], xs[c+2]]
if triplet != lastTriplet:
lastTriplet = triplet
count += 1
let
rem = c mod 3
quote = c div 3
position = quote + (if rem == 1: 0 else: L2)
R12[position] = count
if count < sampleIndices.len.uint:
# There was a repeated triple; need to sort again
# the suffixes of R12 recursively
for _ in 1 .. padding:
R12.add(0)
SA12 = dc3(R12)
# Reorder R12 accordingly
for i, c in SA12:
R12[c] = (i + 1).uint
else:
# Triples were unique; we can reconstruct the suffix
# array from R12, which is sorted
for i, c in R12:
SA12[c - 1] = i.uint
var
R0 = newSeq[uint](xs.len div 3)
SA0 = newSeq[uint](xs.len div 3)
j = 0
# if the last index in `xs` is = 1 mod 3, insert
# that in head position
if xs.len mod 3 == 0:
R0[j] = (xs.len - 3).uint
inc j
for c in SA12:
if c < L2u: # only consider the first half of indices
R0[j] = 3'u * c
inc j
# R0 now contains the indices sorted by SA12[i + 1]
# With another radix pass the will now be sorted by the pair
# (character, following suffix)
radixPass(R0, SA0, xs, max = xs.max, offset = 0)
# we can now merge the set C together with its complement
var k, k0, k12 = 0
result = newSeq[uint](SA0.len + SA12.len)
template r12(i: uint): uint =
let j = i.int
if j >= xs.len - padding: 0'u
else:
if j mod 3 == 1: R12[j div 3]
else: R12[j div 3 + L2]
template compareB1(i, j: uint): bool =
if xs[i] < xs[j]: true
elif xs[j] < xs[i]: false
else: r12(i + 1) < r12(j + 1)
template compareB2(i, j: uint): bool =
if xs[i] < xs[j]: true
elif xs[j] < xs[i]: false
else: compareB1(i + 1, j + 1)
while k0 < SA0.len and k12 < SA12.len:
let
x0 = SA0[k0] # next index from B0
i12 = SA12[k12] # this is an index in R12, but we have to map it back to an index in B12
b1case = i12 < L2u # whether the next index in B12 comes from B1
x12 = if b1case: 1'u + 3'u * i12 else: 2'u + 3'u * (i12 - L2u) # next index from B12
nextInB0 = if b1case: compareB1(x0, x12) else: compareB2(x0, x12)
if nextInB0:
result[k] = x0
inc k0
else:
result[k] = x12
inc k12
inc k
# Add remaining indices from B0
if k0 < SA0.len:
while k < result.len:
result[k] = SA0[k0]
inc k
inc k0
# Add remaining indices from B12
if k12 < SA12.len:
while k < result.len:
let
i12 = SA12[k12]
b1case = i12 < L2u
x12 = if b1case: 1'u + 3'u * i12 else: 2'u + 3'u * (i12 - L2u) # next index from B12
result[k] = x12
inc k
inc k12
proc uniq(content: string): seq[char] =
result = @[]
for x in content:
if not result.contains(x):
result.add(x)
proc enumerate(s: AnyString): seq[uint] =
let alphabet = uniq(s).sorted(system.cmp[char])
result = newSeq[uint](s.len)
for i, c in s:
result[i] = (alphabet.find(c) + 1).uint
for _ in 1 .. padding:
result.add(0)
proc dc3suffixArray(s: AnyString): IntArray =
ints(dc3(enumerate(s)))
proc sortSuffixArray(s: AnyString): IntArray =
let L = s.len
proc compareIndices(j, k: int): int =
var
currentJ = j
currentK = k
for i in 0 ..< L:
if s[currentJ] < s[currentK]: return -1
elif s[currentJ] > s[currentK]: return 1
currentJ += 1
currentK += 1
if currentJ == L:
return -1
if currentK == L:
return 1
return 0
var r = toSeq(0 ..< s.len)
r.sort(compareIndices)
result = ints(s.len, maxBits(s.len.uint))
for i in 0 ..< s.len:
result[i] = r[i].uint
type SuffixArrayAlgorithm* {.pure.} = enum
Sort, DC3
proc suffixArray*(s: AnyString, algorithm = SuffixArrayAlgorithm.Sort): IntArray =
case algorithm
of SuffixArrayAlgorithm.Sort: sortSuffixArray(s)
of SuffixArrayAlgorithm.DC3: dc3suffixArray(s)
const specialChar = '\0'
proc burrowsWheeler*(s: AnyString, rotations: IntArray): string =
let L = s.len
result = newString(L + 1)
result[0] = s[s.len - 1]
for i in 1 .. L:
let j = rotations[i - 1]
if j == 0:
result[i] = specialChar
else:
result[i] = s[(j - 1).int]
proc burrowsWheeler*(s: AnyString, algorithm = SuffixArrayAlgorithm.Sort): string =
burrowsWheeler(s, suffixArray(s, algorithm))
proc inverseBurrowsWheeler*(s: AnyString): string =
let alphabet = uniq(s).sorted(system.cmp[char])
var
eqPartials = newTable[char, int]()
ltCounters = newTable[char, int]()
eqCounters = newSeqOfCap[int](s.len)
currentIndex = 0
currentChar = specialChar
for i, c in s:
if c == specialChar:
currentIndex = i
if eqPartials.hasKey(c):
eqCounters.add(eqPartials[c])
eqPartials[c] += 1
else:
eqCounters.add(0)
eqPartials[c] = 1
var total = 0
for c in alphabet:
ltCounters[c] = total
total += eqPartials[c]
result = newString(s.len - 1)
for j in countdown(result.high, 0):
currentIndex = eqCounters[currentIndex] + ltCounters[currentChar]
currentChar = s[currentIndex]
result[j] = currentChar
type
FMIndex* = object
bwt: WaveletTree
lookup: TableRef[char, int]
length: int
SearchIndex* = object
fmIndex*: FMIndex
suffixArray*: IntArray
Positions* = object
first*, last*: int
proc searchIndex*(s: AnyString, algorithm = SuffixArrayAlgorithm.Sort): SearchIndex =
let
alphabet = uniq(s).sorted(system.cmp[char])
sa = suffixArray(s, algorithm)
var
charCount = newTable[char, int]()
lookup = newTable[char, int]()
for c in s:
if charCount.hasKey(c):
charCount[c] += 1
else:
charCount[c] = 1
var total = 1
lookup[specialChar] = 0
for c in alphabet:
lookup[c] = total
total += charCount[c]
let bwt = burrowsWheeler(s, sa)
return SearchIndex(
fmIndex: FMIndex(bwt: waveletTree(bwt), lookup: lookup, length: bwt.len),
suffixArray: sa
)
proc fmIndex*(s: AnyString, algorithm = SuffixArrayAlgorithm.Sort): FMIndex =
searchIndex(s, algorithm).fmIndex
proc search*(index: FMIndex, pattern: AnyString): Positions =
var
s = 0
e = index.length - 1
for i in countdown(pattern.high, 0):
let c = pattern[i]
s = index.lookup[c] + index.bwt.rank(c, s)
e = index.lookup[c] + index.bwt.rank(c, e)
if s > e: break
return Positions(first: s - 1, last: e - 2)
proc toSeq*(p: Positions): seq[int] = sequtils.toSeq(p.first .. p.last)
proc search*(index: SearchIndex, pattern: AnyString): seq[uint] =
let ps = index.fmIndex.search(pattern)
result = newSeq[uint]()
for i in ps.first .. ps.last:
result.add(index.suffixArray[i])
# An implementation of Boyer-Moore-Horspool string searching.
proc boyerMooreHorspool*(target: AnyString, query: string, start = 0): int =
let
m = len(query)
n = len(target)
if m > n: return -1
var skip = newSeq[int](257)
for i in 1 .. 256:
skip[i] = m
for k in 0 ..< (m - 1):
skip[query[k].int] = m - k - 1
var k = start + m - 1
while k < n:
var
j = m - 1
i = k
while j >= 0 and target[i] == query[j]:
dec(j)
dec(i)
if j == -1:
return i + 1
k += skip[target[k].int]
return -1
proc `[]`*(s: Spill[char], x: Slice[int]): string =
result = newStringOfCap(x.b - x.a + 1)
for i in x.a .. x.b:
result.add(s[i])
proc longestCommonSubstring*(a, b: AnyString, minA, maxA, minB, maxB: int): tuple[startA, finishA, startB, finishB: int] =
let
sizeA = maxA - minA
sizeB = maxB - minB
var
L = newSeq[int](sizeA * sizeB)
max = 0
startA = minA
finishA = minA
startB = minB
finishB = minB
template `[]=`(xs: seq[int], i, j, v: int) =
xs[sizeA * (j - minB) + (i - minA)] = v
template `[]`(xs: seq[int], i, j: int): int =
xs[sizeA * (j - minB) + (i - minA)]
for i in minA ..< maxA:
for j in minB ..< maxB:
if a[i] == b[j]:
if i == minA or j == minB:
L[i, j] = 1
else:
L[i,j] = L[i - 1, j - 1] + 1
if L[i, j] > max:
max = L[i, j]
startA = i - max + 1
finishA = i + 1
startB = j - max + 1
finishB = j + 1
else:
L[i, j] = 0
return (startA, finishA, startB, finishB)
proc longestCommonSubstring*(a, b: AnyString): auto =
longestCommonSubstring(a, b, 0, a.len, 0, b.len)
proc longestCommonSubstringTotal(a, b: AnyString, minA, maxA, minB, maxB: int): int =
let
(startA, finishA, startB, finishB) = longestCommonSubstring(a, b, minA, maxA, minB, maxB)
if startA == finishA or startB == finishB:
return 0
let
left = longestCommonSubstringTotal(a, b, minA, startA, minB, startB)
right = longestCommonSubstringTotal(a, b, finishA, maxA, finishB, maxB)
center = (finishA - startA)
return left + center + right
proc longestCommonSubstringTotal(a, b: AnyString): int =
longestCommonSubstringTotal(a, b, 0, a.len, 0, b.len)
# An implementation of Ratcliff-Obershelp similarity
proc ratcliffObershelp*(a, b: string): float =
let common = longestCommonSubstringTotal(a, b)
return (2 * common).float / (a.len + b.len).float
proc longestCommonSubstringRatio*(a, b: string): float =
let (s, e, _, _) = longestCommonSubstring(a, b)
return (2 * (e - s)).float / (a.len + b.len).float
# An implementation of Levenshtein similarity
proc levenshtein*(a, b: string): float =
let
dist = editDistanceAscii(a, b)
L = a.len + b.len
return (L - dist).float / L.float
# An implementation of Jaro similarity
proc jaro*(a, b: string): float =
let
aLen = len(a)
bLen = len(b)
matchDistance = (max(aLen, bLen) div 2) - 1
if aLen == 0 and bLen == 0:
return 1
var
aMatches = newSeq[bool](aLen)
bMatches = newSeq[bool](bLen)
matches = 0
transpositions = 0
for i in 0 ..< aLen:
let
start = max(0, i - matchDistance)
finish = min(i + matchDistance, bLen - 1)
for j in start .. finish:
if bMatches[j]: continue
if a[i] != b[j]: continue
aMatches[i] = true
bMatches[j] = true
inc(matches)
break
if matches == 0:
return 0
var k = 0
for i in 0 ..< aLen:
if not aMatches[i]: continue
while not bMatches[k]:
inc(k)
if a[i] != b[k]:
inc(transpositions)
inc(k)
let
mf = matches.float
af = aLen.float
bf = bLen.float
tf = transpositions.float
return ((mf / af) + (mf / bf) + ((mf - tf / 2) / mf)) / 3
# An implementation of Jaro-Winkler similarity
proc jaroWinkler*(a, b: string): float =
const p = 0.1
let j = jaro(a, b)
# Compute common prefix length
var L = 0
for i in 0 ..< min(len(a), len(b)):
if a[i] == b[i]:
inc(L)
else:
break
return j + p * L.float * (1 - j)
type
Similarity* {.pure.} = enum
RatcliffObershelp, Levenshtein, LongestSubstring, Jaro, JaroWinkler
SearchOptions* = object
exactness, tolerance: float
attempts: int
similarity: Similarity
proc searchOptions*(exactness = 0.1, tolerance = 0.7, attempts = 30, similarity = Similarity.RatcliffObershelp): SearchOptions =
SearchOptions(
exactness: exactness,
tolerance: tolerance,
attempts: attempts,
similarity: similarity
)
proc searchApproximate*(index: SearchIndex, orig, pattern: AnyString, options: SearchOptions): int =
# We choose our similarity function
var similarity = case options.similarity
of Similarity.RatcliffObershelp: ratcliffObershelp
of Similarity.Levenshtein: levenshtein
of Similarity.LongestSubstring: longestCommonSubstringRatio
of Similarity.Jaro: jaro
of Similarity.JaroWinkler: jaroWinkler
# We are looking for an exact match of a substring of this length
let exactLen = (pattern.len.float * options.exactness).int
# We then select a certain number of random substrings of this length
# They cannot start later than `maxStart` characters, since the are
# long `exactLen`
let maxStart = pattern.len - exactLen
for i in 1 .. options.attempts:
let
begin = rand(maxStart - 1)
substring = pattern[begin ..< (begin + exactLen)]