-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
128 lines (76 loc) · 2.29 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import cv2
import os
############ KNN ##############
def distance(d1,d2):
return np.sqrt(((d1-d2)**2).sum())
def knn(train,test,k=5):
dist = []
for i in range(train.shape[0]):
ix = train[:,:-1]
iy = train[i,-1]
d = distance(test,ix)
dist.append([d,iy])
dk = sorted(dist , key = lambda x : x[0])[:k]
labels = np.array(dk)[:,-1]
output = np.unique(labels,return_counts = True)
index = np.argmax(output[1])
return output[0][index]
########## Knn Ends #############
#initialise webcam
cap = cv2.VideoCapture(0)
#face Detection
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
#data preparation
class_id = 0 #labels for given file
names = {} #mapping id with name
dataset_path = "./data/"
face_data = []
labels = []
for fx in os.listdir(dataset_path):
if fx.endswith('.npy'):
#create a mapping bte class_id and name
names[class_id] = fx[:-4]
print("Loaded " + fx)
data_item = np.load(dataset_path+fx)
face_data.append(data_item)
#create labels for the class
target = class_id*np.ones((data_item.shape[0],))
class_id+=1
labels.append(target)
face_dataset = np.concatenate(face_data, axis = 0)
face_labels = np.concatenate(labels, axis = 0).reshape((-1,1))
print(face_dataset.shape)
print(face_labels.shape)
train_set = np.concatenate((face_dataset, face_labels), axis = 1)
print(train_set.shape)
#testing
while True:
ret , frame = cap.read()
if(ret == False):
continue
#gray_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(frame,1.3,5)
if (len(faces)) == 0:
continue
#pick the last face(largest area)
for face in faces:
#draw bounding box
x,y,w,h = face
#extract (crop out face)
offset = 10
face_section = frame[y-offset:y+h+offset, x-offset : x+w+offset]
face_section = cv2.resize(face_section,(100,100))
#predict
out = knn(train_set,face_section.flatten())
#display output on screen
pred_name = names[int(out)]
cv2.putText(frame, pred_name, (x,y-10), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0), 2, cv2.LINE_AA)
cv2.rectangle(frame,(x,y), (x+w,y+h), (0,255,), 2)
cv2.imshow("Faces" , frame)
#cv2.imshow("gray_frame" , gray_frame)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('q'):
break
cap.release()
cv2.destroyAllWindows()