-
Notifications
You must be signed in to change notification settings - Fork 960
/
Copy pathsample_data_loader.py
423 lines (365 loc) · 20.7 KB
/
sample_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright Contributors to the Amundsen project.
# SPDX-License-Identifier: Apache-2.0
"""
This is a example script demonstrating how to load data into Neo4j and
Elasticsearch without using an Airflow DAG.
It contains several jobs:
- `run_csv_job`: runs a job that extracts table data from a CSV, loads (writes)
this into a different local directory as a csv, then publishes this data to
neo4j.
- `run_table_column_job`: does the same thing as `run_csv_job`, but with a csv
containing column data.
- `create_last_updated_job`: creates a job that gets the current time, dumps it
into a predefined model schema, and publishes this to neo4j.
- `create_es_publisher_sample_job`: creates a job that extracts data from neo4j
and pubishes it into elasticsearch.
For other available extractors, please take a look at
https://github.com/amundsen-io/amundsendatabuilder#list-of-extractors
"""
import logging
import os
import sys
import uuid
from amundsen_common.models.index_map import DASHBOARD_ELASTICSEARCH_INDEX_MAPPING, USER_INDEX_MAP
from elasticsearch import Elasticsearch
from pyhocon import ConfigFactory
from sqlalchemy.ext.declarative import declarative_base
from databuilder.extractor.csv_extractor import (
CsvColumnLineageExtractor, CsvExtractor, CsvTableBadgeExtractor, CsvTableColumnExtractor, CsvTableLineageExtractor,
)
from databuilder.extractor.es_last_updated_extractor import EsLastUpdatedExtractor
from databuilder.extractor.neo4j_search_data_extractor import Neo4jSearchDataExtractor
from databuilder.job.job import DefaultJob
from databuilder.loader.file_system_elasticsearch_json_loader import FSElasticsearchJSONLoader
from databuilder.loader.file_system_neo4j_csv_loader import FsNeo4jCSVLoader
from databuilder.publisher.elasticsearch_publisher import ElasticsearchPublisher
from databuilder.publisher.neo4j_csv_publisher import Neo4jCsvPublisher
from databuilder.task.task import DefaultTask
from databuilder.transformer.base_transformer import ChainedTransformer, NoopTransformer
from databuilder.transformer.dict_to_model import MODEL_CLASS, DictToModel
from databuilder.transformer.generic_transformer import (
CALLBACK_FUNCTION, FIELD_NAME, GenericTransformer,
)
es_host = os.getenv('CREDENTIALS_ELASTICSEARCH_PROXY_HOST', 'localhost')
neo_host = os.getenv('CREDENTIALS_NEO4J_PROXY_HOST', 'localhost')
es_port = os.getenv('CREDENTIALS_ELASTICSEARCH_PROXY_PORT', 9200)
neo_port = os.getenv('CREDENTIALS_NEO4J_PROXY_PORT', 7687)
if len(sys.argv) > 1:
es_host = sys.argv[1]
if len(sys.argv) > 2:
neo_host = sys.argv[2]
es = Elasticsearch([
{'host': es_host, 'port': es_port},
])
Base = declarative_base()
NEO4J_ENDPOINT = f'bolt://{neo_host}:{neo_port}'
neo4j_endpoint = NEO4J_ENDPOINT
neo4j_user = 'neo4j'
neo4j_password = 'test'
LOGGER = logging.getLogger(__name__)
def run_csv_job(file_loc, job_name, model):
tmp_folder = f'/var/tmp/amundsen/{job_name}'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
csv_extractor = CsvExtractor()
csv_loader = FsNeo4jCSVLoader()
task = DefaultTask(extractor=csv_extractor,
loader=csv_loader,
transformer=NoopTransformer())
job_config = ConfigFactory.from_dict({
'extractor.csv.file_location': file_loc,
'extractor.csv.model_class': model,
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'loader.filesystem_csv_neo4j.delete_created_directories': True,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'unique_tag', # should use unique tag here like {ds}
})
DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher()).launch()
def run_table_badge_job(table_path, badge_path):
tmp_folder = '/var/tmp/amundsen/table_badge'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
extractor = CsvTableBadgeExtractor()
csv_loader = FsNeo4jCSVLoader()
task = DefaultTask(extractor=extractor,
loader=csv_loader,
transformer=NoopTransformer())
job_config = ConfigFactory.from_dict({
'extractor.csvtablebadge.table_file_location': table_path,
'extractor.csvtablebadge.badge_file_location': badge_path,
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'loader.filesystem_csv_neo4j.delete_created_directories': True,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'unique_tag_b', # should use unique tag here like {ds}
})
job = DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher())
job.launch()
def run_table_column_job(table_path, column_path):
tmp_folder = '/var/tmp/amundsen/table_column'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
extractor = CsvTableColumnExtractor()
csv_loader = FsNeo4jCSVLoader()
task = DefaultTask(extractor,
loader=csv_loader,
transformer=NoopTransformer())
job_config = ConfigFactory.from_dict({
'extractor.csvtablecolumn.table_file_location': table_path,
'extractor.csvtablecolumn.column_file_location': column_path,
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'loader.filesystem_csv_neo4j.delete_created_directories': True,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'unique_tag', # should use unique tag here like {ds}
})
job = DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher())
job.launch()
def run_table_lineage_job(table_lineage_path):
tmp_folder = '/var/tmp/amundsen/table_column'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
extractor = CsvTableLineageExtractor()
csv_loader = FsNeo4jCSVLoader()
task = DefaultTask(extractor,
loader=csv_loader,
transformer=NoopTransformer())
job_config = ConfigFactory.from_dict({
'extractor.csvtablelineage.table_lineage_file_location': table_lineage_path,
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'loader.filesystem_csv_neo4j.delete_created_directories': True,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'lineage_unique_tag', # should use unique tag here like {ds}
})
job = DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher())
job.launch()
def run_column_lineage_job(column_lineage_path):
tmp_folder = '/var/tmp/amundsen/table_column'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
extractor = CsvColumnLineageExtractor()
csv_loader = FsNeo4jCSVLoader()
task = DefaultTask(extractor,
loader=csv_loader,
transformer=NoopTransformer())
job_config = ConfigFactory.from_dict({
'extractor.csvcolumnlineage.column_lineage_file_location': column_lineage_path,
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'loader.filesystem_csv_neo4j.delete_created_directories': True,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'lineage_unique_tag', # should use unique tag here like {ds}
})
job = DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher())
job.launch()
def create_last_updated_job():
# loader saves data to these folders and publisher reads it from here
tmp_folder = '/var/tmp/amundsen/last_updated_data'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
task = DefaultTask(extractor=EsLastUpdatedExtractor(),
loader=FsNeo4jCSVLoader())
job_config = ConfigFactory.from_dict({
'extractor.es_last_updated.model_class':
'databuilder.models.es_last_updated.ESLastUpdated',
'loader.filesystem_csv_neo4j.node_dir_path': node_files_folder,
'loader.filesystem_csv_neo4j.relationship_dir_path': relationship_files_folder,
'publisher.neo4j.node_files_directory': node_files_folder,
'publisher.neo4j.relation_files_directory': relationship_files_folder,
'publisher.neo4j.neo4j_endpoint': neo4j_endpoint,
'publisher.neo4j.neo4j_user': neo4j_user,
'publisher.neo4j.neo4j_password': neo4j_password,
'publisher.neo4j.neo4j_encrypted': False,
'publisher.neo4j.job_publish_tag': 'unique_lastupdated_tag', # should use unique tag here like {ds}
})
return DefaultJob(conf=job_config,
task=task,
publisher=Neo4jCsvPublisher())
def _str_to_list(str_val):
return str_val.split(',')
def create_dashboard_tables_job():
# loader saves data to these folders and publisher reads it from here
tmp_folder = '/var/tmp/amundsen/dashboard_table'
node_files_folder = f'{tmp_folder}/nodes'
relationship_files_folder = f'{tmp_folder}/relationships'
csv_extractor = CsvExtractor()
csv_loader = FsNeo4jCSVLoader()
generic_transformer = GenericTransformer()
dict_to_model_transformer = DictToModel()
transformer = ChainedTransformer(transformers=[generic_transformer, dict_to_model_transformer],
is_init_transformers=True)
task = DefaultTask(extractor=csv_extractor,
loader=csv_loader,
transformer=transformer)
publisher = Neo4jCsvPublisher()
job_config = ConfigFactory.from_dict({
f'{csv_extractor.get_scope()}.file_location': 'example/sample_data/sample_dashboard_table.csv',
f'{transformer.get_scope()}.{generic_transformer.get_scope()}.{FIELD_NAME}': 'table_ids',
f'{transformer.get_scope()}.{generic_transformer.get_scope()}.{CALLBACK_FUNCTION}': _str_to_list,
f'{transformer.get_scope()}.{dict_to_model_transformer.get_scope()}.{MODEL_CLASS}':
'databuilder.models.dashboard.dashboard_table.DashboardTable',
f'{csv_loader.get_scope()}.node_dir_path': node_files_folder,
f'{csv_loader.get_scope()}.relationship_dir_path': relationship_files_folder,
f'{csv_loader.get_scope()}.delete_created_directories': True,
f'{publisher.get_scope()}.node_files_directory': node_files_folder,
f'{publisher.get_scope()}.relation_files_directory': relationship_files_folder,
f'{publisher.get_scope()}.neo4j_endpoint': neo4j_endpoint,
f'{publisher.get_scope()}.neo4j_user': neo4j_user,
f'{publisher.get_scope()}.neo4j_password': neo4j_password,
f'{publisher.get_scope()}.neo4j_encrypted': False,
f'{publisher.get_scope()}.job_publish_tag': 'unique_tag', # should use unique tag here like {ds}
})
return DefaultJob(conf=job_config,
task=task,
publisher=publisher)
def create_es_publisher_sample_job(elasticsearch_index_alias='table_search_index',
elasticsearch_doc_type_key='table',
model_name='databuilder.models.table_elasticsearch_document.TableESDocument',
entity_type='table',
elasticsearch_mapping=None):
"""
:param elasticsearch_index_alias: alias for Elasticsearch used in
amundsensearchlibrary/search_service/config.py as an index
:param elasticsearch_doc_type_key: name the ElasticSearch index is prepended with. Defaults to `table` resulting in
`table_{uuid}`
:param model_name: the Databuilder model class used in transporting between Extractor and Loader
:param entity_type: Entity type handed to the `Neo4jSearchDataExtractor` class, used to determine
Cypher query to extract data from Neo4j. Defaults to `table`.
:param elasticsearch_mapping: Elasticsearch field mapping "DDL" handed to the `ElasticsearchPublisher` class,
if None is given (default) it uses the `Table` query baked into the Publisher
"""
# loader saves data to this location and publisher reads it from here
extracted_search_data_path = '/var/tmp/amundsen/search_data.json'
task = DefaultTask(loader=FSElasticsearchJSONLoader(),
extractor=Neo4jSearchDataExtractor(),
transformer=NoopTransformer())
# elastic search client instance
elasticsearch_client = es
# unique name of new index in Elasticsearch
elasticsearch_new_index_key = f'{elasticsearch_doc_type_key}_{uuid.uuid4()}'
job_config = ConfigFactory.from_dict({
'extractor.search_data.entity_type': entity_type,
'extractor.search_data.extractor.neo4j.graph_url': neo4j_endpoint,
'extractor.search_data.extractor.neo4j.model_class': model_name,
'extractor.search_data.extractor.neo4j.neo4j_auth_user': neo4j_user,
'extractor.search_data.extractor.neo4j.neo4j_auth_pw': neo4j_password,
'extractor.search_data.extractor.neo4j.neo4j_encrypted': False,
'loader.filesystem.elasticsearch.file_path': extracted_search_data_path,
'loader.filesystem.elasticsearch.mode': 'w',
'publisher.elasticsearch.file_path': extracted_search_data_path,
'publisher.elasticsearch.mode': 'r',
'publisher.elasticsearch.client': elasticsearch_client,
'publisher.elasticsearch.new_index': elasticsearch_new_index_key,
'publisher.elasticsearch.doc_type': elasticsearch_doc_type_key,
'publisher.elasticsearch.alias': elasticsearch_index_alias,
})
# only optionally add these keys, so need to dynamically `put` them
if elasticsearch_mapping:
job_config.put(f'publisher.elasticsearch.{ElasticsearchPublisher.ELASTICSEARCH_MAPPING_CONFIG_KEY}',
elasticsearch_mapping)
job = DefaultJob(conf=job_config,
task=task,
publisher=ElasticsearchPublisher())
return job
if __name__ == "__main__":
# Uncomment next line to get INFO level logging
# logging.basicConfig(level=logging.INFO)
run_table_column_job('example/sample_data/sample_table.csv', 'example/sample_data/sample_col.csv')
run_table_badge_job('example/sample_data/sample_table.csv', 'example/sample_data/sample_badges.csv')
run_table_lineage_job('example/sample_data/sample_table_lineage.csv')
run_column_lineage_job('example/sample_data/sample_column_lineage.csv')
run_csv_job('example/sample_data/sample_table_column_stats.csv', 'test_table_column_stats',
'databuilder.models.table_stats.TableColumnStats')
run_csv_job('example/sample_data/sample_table_programmatic_source.csv', 'test_programmatic_source',
'databuilder.models.table_metadata.TableMetadata')
run_csv_job('example/sample_data/sample_watermark.csv', 'test_watermark_metadata',
'databuilder.models.watermark.Watermark')
run_csv_job('example/sample_data/sample_table_owner.csv', 'test_table_owner_metadata',
'databuilder.models.table_owner.TableOwner')
run_csv_job('example/sample_data/sample_column_usage.csv', 'test_usage_metadata',
'databuilder.models.table_column_usage.ColumnReader')
run_csv_job('example/sample_data/sample_user.csv', 'test_user_metadata',
'databuilder.models.user.User')
run_csv_job('example/sample_data/sample_application.csv', 'test_application_metadata',
'databuilder.models.application.Application')
run_csv_job('example/sample_data/sample_table_report.csv', 'test_report_metadata',
'databuilder.models.report.ResourceReport')
run_csv_job('example/sample_data/sample_source.csv', 'test_source_metadata',
'databuilder.models.table_source.TableSource')
run_csv_job('example/sample_data/sample_tags.csv', 'test_tag_metadata',
'databuilder.models.table_metadata.TagMetadata')
run_csv_job('example/sample_data/sample_table_last_updated.csv', 'test_table_last_updated_metadata',
'databuilder.models.table_last_updated.TableLastUpdated')
run_csv_job('example/sample_data/sample_schema_description.csv', 'test_schema_description',
'databuilder.models.schema.schema.SchemaModel')
run_csv_job('example/sample_data/sample_dashboard_base.csv', 'test_dashboard_base',
'databuilder.models.dashboard.dashboard_metadata.DashboardMetadata')
run_csv_job('example/sample_data/sample_dashboard_usage.csv', 'test_dashboard_usage',
'databuilder.models.dashboard.dashboard_usage.DashboardUsage')
run_csv_job('example/sample_data/sample_dashboard_owner.csv', 'test_dashboard_owner',
'databuilder.models.dashboard.dashboard_owner.DashboardOwner')
run_csv_job('example/sample_data/sample_dashboard_query.csv', 'test_dashboard_query',
'databuilder.models.dashboard.dashboard_query.DashboardQuery')
run_csv_job('example/sample_data/sample_dashboard_last_execution.csv', 'test_dashboard_last_execution',
'databuilder.models.dashboard.dashboard_execution.DashboardExecution')
run_csv_job('example/sample_data/sample_dashboard_last_modified.csv', 'test_dashboard_last_modified',
'databuilder.models.dashboard.dashboard_last_modified.DashboardLastModifiedTimestamp')
create_dashboard_tables_job().launch()
create_last_updated_job().launch()
job_es_table = create_es_publisher_sample_job(
elasticsearch_index_alias='table_search_index',
elasticsearch_doc_type_key='table',
entity_type='table',
model_name='databuilder.models.table_elasticsearch_document.TableESDocument')
job_es_table.launch()
job_es_user = create_es_publisher_sample_job(
elasticsearch_index_alias='user_search_index',
elasticsearch_doc_type_key='user',
model_name='databuilder.models.user_elasticsearch_document.UserESDocument',
entity_type='user',
elasticsearch_mapping=USER_INDEX_MAP)
job_es_user.launch()
job_es_dashboard = create_es_publisher_sample_job(
elasticsearch_index_alias='dashboard_search_index',
elasticsearch_doc_type_key='dashboard',
model_name='databuilder.models.dashboard_elasticsearch_document.DashboardESDocument',
entity_type='dashboard',
elasticsearch_mapping=DASHBOARD_ELASTICSEARCH_INDEX_MAPPING)
job_es_dashboard.launch()