This repository has been archived by the owner on Aug 11, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSession5.py
139 lines (96 loc) · 3.64 KB
/
Session5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
############## Classification#############
import pandas as pd
import numpy as np
###reading data
# missValue=['?']
Autism=pd.read_csv('Autism-Adult.csv')
# print(Autism.isnull().sum())
# print(Autism['age numeric'][62])
nanind=[]
for ind in range( len(Autism['age numeric'])):
if (Autism['age numeric'][ind]=='?'):
nanind.append(ind)
Autism=Autism.drop(nanind)
X=Autism.values[:,:12]
y=Autism.values[:,12]
y_edit= np.array([1 if yinstance=='yes' else 0 for yinstance in y ])
X[:,11]=np.array([1 if xinstance=='f' else 0 for xinstance in X[:,11] ])
###### Devide data to test and train
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y_edit,test_size=0.2,random_state=0)
###########Logistic Regression#####
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logregmodel = logreg.fit(X_train, y_train)
y_pred = logregmodel.predict(X_test)
########Confusion matrix
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred , y_test )
print(cnf_matrix)
#####Metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
##########Naive Bayes #########
from sklearn.naive_bayes import GaussianNB
GNB = GaussianNB()
GNBmodel = GNB.fit(X_train, y_train)
y_pred = GNBmodel.predict(X_test)
########Confusion matrix
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred,y_test )
print(cnf_matrix)
#####Metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
print("F_measure:",metrics.f1_score(y_test, y_pred))
######QDA ###########
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
QDA= QuadraticDiscriminantAnalysis()
QDAmodel = QDA.fit(X_train, y_train)
y_pred = QDAmodel.predict(X_test)
########Confusion matrix
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
print(cnf_matrix)
#####Metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test , y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
######LDA ###########
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
LDA= LinearDiscriminantAnalysis()
LDAmodel = LDA.fit(X_train, y_train)
y_pred = LDAmodel.predict(X_test)
########Confusion matrix
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred ,y_test )
print(cnf_matrix)
#####Metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test , y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
###### Classification with Linear Regression######
from sklearn.linear_model import LinearRegression
LR= LinearRegression()
LRmodel = LR.fit(X_train, y_train)
y_regpred = LRmodel.predict(X_test)
y_pred= [1 if x>=0.4 else 0 for x in y_regpred]
########Confusion matrix
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred , y_test)
print(cnf_matrix)
#####Metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test , y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
from sklearn.model_selection import LeaveOneOut
loo = LeaveOneOut()
loo.get_n_splits(X)
for train_index, test_index in loo.split(X):
# print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# print(X_train, X_test, y_train, y_test)
1+1