This repository has been archived by the owner on Aug 11, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSession2Supplementary.py
235 lines (179 loc) · 6.92 KB
/
Session2Supplementary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
from sklearn import datasets
from sklearn.model_selection import cross_val_predict
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
P=np.pi
# --------------------------------------------------------------
# Creat samples
N=15
bins=np.random.uniform(0.2,2,N)
bins=np.sort(bins)
t=np.sin(2*P*bins)+ np.random.normal(0.1,1)
print(t,bins)
plt.plot(bins,t, 'ro',linewidth=0.7)
# --------------------------------------------------------------
# first Fi
bins=bins[:, np.newaxis]
z = np.ones((N,1))
Fi=np.append( z,bins, axis=1)
lr = LinearRegression()
lr.fit(Fi, t)
plt.plot(bins, lr.predict(Fi), '--',linewidth=0.7)
Fi1=Fi
new=bins
# -----------------------------------------------------------------
# creat fi for different degrees (2,N)
for i in range (2,N):
new=np.power(bins,i)
Fi1 = np.append(Fi1, new, axis=1)
lr = LinearRegression()
lr.fit(Fi1, t)
P=lr.predict(Fi1)
plt.plot(bins,P,'-',linewidth=0.7 )
plt.show()
y = t
predicted = cross_val_predict(lr,bins, y, cv=10)
fig, ax = plt.subplots()
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
boston = datasets.load_boston()
lr = LinearRegression()
y = boston.target
predicted = cross_val_predict(lr, boston.data, y, cv=10)
fig, ax = plt.subplots()
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
#Importing libraries. The same will be used throughout the article.
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
#matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 12, 10
#Define input array with angles from 60deg to 300deg converted to radians
x = np.array([i*np.pi/180 for i in range(60,300,4)])
np.random.seed(10) #Setting seed for reproducability
y = np.sin(x) + np.random.normal(0,0.15,len(x))
data = pd.DataFrame(np.column_stack([x,y]),columns=['x','y'])
plt.plot(data['x'],data['y'],'.')
for i in range(2,16): #power of 1 is already there
colname = 'x_%d'%i #new var will be x_power
data[colname] = data['x']**i
print(data.head())
# Import Linear Regression model from scikit-learn.
from sklearn.linear_model import LinearRegression
def linear_regression(data, power, models_to_plot):
# initialize predictors:
predictors = ['x']
if power >= 2:
predictors.extend(['x_%d' % i for i in range(2, power + 1)])
# Fit the model
linreg = LinearRegression(normalize=True)
linreg.fit(data[predictors], data['y'])
y_pred = linreg.predict(data[predictors])
# Check if a plot is to be made for the entered power
if power in models_to_plot:
plt.subplot(models_to_plot[power])
plt.tight_layout()
plt.plot(data['x'], y_pred)
plt.plot(data['x'], data['y'], '.')
plt.title('Plot for power: %d' % power)
# plt.show()
# Return the result in pre-defined format
rss = sum((y_pred - data['y']) ** 2)
ret = [rss]
ret.extend([linreg.intercept_])
ret.extend(linreg.coef_)
return ret
#Initialize a dataframe to store the results:
col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)]
ind = ['model_pow_%d'%i for i in range(1,16)]
coef_matrix_simple = pd.DataFrame(index=ind, columns=col)
#Define the powers for which a plot is required:
models_to_plot = {1:231,3:232,6:233,9:234,12:235,15:236}
#Iterate through all powers and assimilate results
for i in range(1,16):
coef_matrix_simple.iloc[i-1,0:i+2] = linear_regression(data, power=i, models_to_plot=models_to_plot)
plt.show()
#Set the display format to be scientific for ease of analysis
pd.options.display.float_format = '{:,.2g}'.format
print(coef_matrix_simple)
from sklearn.linear_model import Ridge
def ridge_regression(data, predictors, alpha, models_to_plot={}):
# Fit the model
ridgereg = Ridge(alpha=alpha, normalize=True)
ridgereg.fit(data[predictors], data['y'])
y_pred = ridgereg.predict(data[predictors])
# Check if a plot is to be made for the entered alpha
if alpha in models_to_plot:
plt.subplot(models_to_plot[alpha])
plt.tight_layout()
plt.plot(data['x'], y_pred)
plt.plot(data['x'], data['y'], '.')
plt.title('Plot for alpha: %.3g' % alpha)
# Return the result in pre-defined format
rss = sum((y_pred - data['y']) ** 2)
ret = [rss]
ret.extend([ridgereg.intercept_])
ret.extend(ridgereg.coef_)
return ret
#Initialize predictors to be set of 15 powers of x
predictors=['x']
predictors.extend(['x_%d'%i for i in range(2,16)])
#Set the different values of alpha to be tested
alpha_ridge = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]
#Initialize the dataframe for storing coefficients.
col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)]
ind = ['alpha_%.2g'%alpha_ridge[i] for i in range(0,10)]
coef_matrix_ridge = pd.DataFrame(index=ind, columns=col)
models_to_plot = {1e-15:231, 1e-10:232, 1e-4:233, 1e-3:234, 1e-2:235, 5:236}
for i in range(10):
coef_matrix_ridge.iloc[i,] = ridge_regression(data, predictors, alpha_ridge[i], models_to_plot)
plt.show()
#Set the display format to be scientific for ease of analysis
pd.options.display.float_format = '{:,.2g}'.format
print(coef_matrix_ridge)
coef_matrix_ridge.apply(lambda x: sum(x.values==0),axis=1)
from sklearn.linear_model import Lasso
def lasso_regression(data, predictors, alpha, models_to_plot={}):
# Fit the model
lassoreg = Lasso(alpha=alpha, normalize=True, max_iter=1e5)
lassoreg.fit(data[predictors], data['y'])
y_pred = lassoreg.predict(data[predictors])
# Check if a plot is to be made for the entered alpha
if alpha in models_to_plot:
plt.subplot(models_to_plot[alpha])
plt.tight_layout()
plt.plot(data['x'], y_pred)
plt.plot(data['x'], data['y'], '.')
plt.title('Plot for alpha: %.3g' % alpha)
# Return the result in pre-defined format
rss = sum((y_pred - data['y']) ** 2)
ret = [rss]
ret.extend([lassoreg.intercept_])
ret.extend(lassoreg.coef_)
return ret
#Initialize predictors to all 15 powers of x
predictors=['x']
predictors.extend(['x_%d'%i for i in range(2,16)])
#Define the alpha values to test
alpha_lasso = [1e-15, 1e-10, 1e-8, 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10]
#Initialize the dataframe to store coefficients
col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)]
ind = ['alpha_%.2g'%alpha_lasso[i] for i in range(0,10)]
coef_matrix_lasso = pd.DataFrame(index=ind, columns=col)
#Define the models to plot
models_to_plot = {1e-10:231, 1e-5:232,1e-4:233, 1e-3:234, 1e-2:235, 1:236}
#Iterate over the 10 alpha values:
for i in range(10):
coef_matrix_lasso.iloc[i,] = lasso_regression(data, predictors, alpha_lasso[i], models_to_plot)
plt.show()
coef_matrix_lasso.apply(lambda x: sum(x.values==0),axis=1)