This repository has been archived by the owner on Aug 11, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRNN.py
183 lines (129 loc) · 5.15 KB
/
RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding, LSTM
from keras.datasets import imdb
num_words = 1000
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words = num_words)
X_train = sequence.pad_sequences(X_train, maxlen=200)
X_test = sequence.pad_sequences(X_test, maxlen=200)
# Define network architecture and compile
model = Sequential()
model.add(Embedding(num_words, 50, input_length=200))
model.add(Dropout(0.2))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(250, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
model.fit(X_train,y_train, epochs=2, batch_size=150)
predict = model.predict(X_test)
print(y_test,predict)
import numpy as np
pred =np.array([1 if p>=0.5 else 0 for p in predict])
from sklearn import metrics
print(metrics.classification_report(y_test,pred))
'''
import numpy as np
import collections
class DataHandler:
def read_data(self, fname):
with open(fname) as f:
content = f.readlines()
content = [x.strip() for x in content]
content = [content[i].split() for i in range(len(content))]
content = np.array(content)
content = np.reshape(content, [-1, ])
return content
def build_datasets(self, words):
count = collections.Counter(words).most_common()
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return dictionary, reverse_dictionary
import tensorflow as tf
from tensorflow.contrib import rnn
class RNNGenerator:
def create_LSTM(self, inputs, weights, biases, seq_size, num_units):
# Reshape input to [1, sequence_size] and split it into sequences
inputs = tf.reshape(inputs, [-1, seq_size])
inputs = tf.split(inputs, seq_size, 1)
# LSTM with 2 layers
rnn_model = rnn.MultiRNNCell([rnn.BasicLSTMCell(num_units), rnn.BasicLSTMCell(num_units)])
# Generate prediction
outputs, states = rnn.static_rnn(rnn_model, inputs, dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
import tensorflow as tf
import random
import numpy as np
class SessionRunner():
training_iters = 50000
def __init__(self, optimizer, accuracy, cost, lstm, initilizer, writer):
self.optimizer = optimizer
self.accuracy = accuracy
self.cost = cost
self.lstm = lstm
self.initilizer = initilizer
self.writer = writer
def run_session(self, x, y, n_input, dictionary, reverse_dictionary, training_data):
with tf.Session() as session:
session.run(self.initilizer)
step = 0
offset = random.randint(0, n_input + 1)
acc_total = 0
self.writer.add_graph(session.graph)
while step < self.training_iters:
if offset > (len(training_data) - n_input - 1):
offset = random.randint(0, n_input + 1)
sym_in_keys = [[dictionary[str(training_data[i])]]
for i in range(offset, offset + n_input)]
sym_in_keys = np.reshape(np.array(sym_in_keys), [-1, n_input, 1])
sym_out_onehot = np.zeros([len(dictionary)], dtype=float)
sym_out_onehot[dictionary[str(training_data[offset + n_input])]] = 1.0
sym_out_onehot = np.reshape(sym_out_onehot, [1, -1])
_, acc, loss, onehot_pred = session.run([self.optimizer, self.accuracy,
self.cost, self.lstm],
feed_dict={x: sym_in_keys, y: sym_out_onehot})
acc_total += acc
if (step + 1) % 1000 == 0:
print("Iteration = " + str(step + 1) + ", Average Accuracy= " +
"{:.2f}%".format(100 * acc_total / 1000))
acc_total = 0
step += 1
offset += (n_input + 1)
import tensorflow as tf
# from DataHandler import DataHandler
# from RNN_generator import RNNGenerator
# from session_runner import SessionRunner
log_path = '/output/tensorflow/'
writer = tf.summary.FileWriter(log_path)
# Load and prepare data
data_handler = DataHandler()
training_data = data_handler.read_data('meditations.txt')
dictionary, reverse_dictionary = data_handler.build_datasets(training_data)
# TensorFlow Graph input
n_input = 3
n_units = 512
x = tf.placeholder("float", [None, n_input, 1])
y = tf.placeholder("float", [None, len(dictionary)])
# RNN output weights and biases
weights = {
'out': tf.Variable(tf.random_normal([n_units, len(dictionary)]))
}
biases = {
'out': tf.Variable(tf.random_normal([len(dictionary)]))
}
rnn_generator = RNNGenerator()
lstm = rnn_generator.create_LSTM(x, weights, biases, n_input, n_units)
# Loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=lstm, labels=y))
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001).minimize(cost)
# Model evaluation
correct_pred = tf.equal(tf.argmax(lstm,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
initilizer = tf.global_variables_initializer()
session_runner = SessionRunner(optimizer, accuracy, cost, lstm, initilizer, writer)
session_runner.run_session(x, y, n_input, dictionary, reverse_dictionary, training_data)
'''