forked from amandajshao/crowd_group_profile
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_video_collectiveness.m
175 lines (151 loc) · 7.47 KB
/
main_video_collectiveness.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% main function for collectiveness %%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% May 15, 2014, Jing Shao
% If you use this code, please cite the paper:
% J. Shao, C. C. Loy, X. Wang, "Scene-Independent Group Profiling in Crowd", CVPR, 2014.
clc;clear;close all
%% Descriptor -- Collectiveness (A-fit error within each group)
path = '.\';
path_gr = [path,'result_groupDet_new\'];
path_xls = [path, 'video_info_t0.xls'];
[~,~,xls] = xlsread(path_xls);
path_img_dir = xls(2:end,1);
% initialization and parameter setting
group_size_th = 25;
fit_time_len = 8; % the same as the coherent group detection's parameter
collectiveness(length(path_img_dir),1).coll_gr = [];
collectiveness(length(path_img_dir),1).coll_gr_mean = [];
collectiveness(length(path_img_dir),1).gr_len = [];
for file_n = 1 : length(path_img_dir)
file_name = path_img_dir{file_n};
fprintf('Group descriptor "Collectiveness" for [%d:%s].\n', file_n, file_name);
%% load collective result from group detection
load([path_gr, 'trkClusterTimeLine_1_', file_name, '.mat'], 'trkClusterTimeLine');
load([path_gr, 'trks_', file_name, '.mat'], 'trks');
load([path_gr, 'A_1_', file_name, '.mat'], 'A');
load([path_gr, 'color_1_', file_name, '.mat'], 'color_ind')
%%
trkClusterNumTime = max(trkClusterTimeLine);
[trkTime, lenTime, nTrks, trkTimeLine] = fun_trkInfo(trks);
t_seq = find(trkClusterNumTime ~= 0);
%% Do not need too long time (can be tuned)
loca = cellfun(@findstr, xls(:,1), repmat({file_name}, size(xls(:,1))), 'UniformOutput', false);
[t_loc, ~, ~] = find(~cellfun(@isempty, loca) == 1);
t_start = fun_cell2num(xls(t_loc,5));
t_end = min(t_seq(end),fun_cell2num(xls(t_loc,6)));
%%
cur_trk_ind = find(trkClusterTimeLine(:,t_start)~=0);
cur_gr_ind = trkClusterTimeLine(cur_trk_ind,t_start);
data = fun_curX(trks, nTrks, trkTime, t_start, cur_trk_ind);
[cur_trk_ind, cur_gr_ind, data] = fun_curX_preprocess(data, cur_gr_ind, cur_trk_ind);
clusterValue = unique(cur_gr_ind);
%%
rmse_trk_mem = []; group_size = [];
for grSele = 1 : length(clusterValue)
clusterV = clusterValue(grSele);
for curTime = t_start : t_end
t_oo = find(t_seq==curTime);
if isempty(t_oo)
continue;
end
A_cur = A(:,t_oo);
cur_color_ind = color_ind{t_oo};
cur_color_ind_cluster = find(cur_color_ind==clusterV,1);
% prepare data
cur_trk_ind = find(trkClusterTimeLine(:,curTime)~=0);
cur_gr_ind = trkClusterTimeLine(cur_trk_ind,curTime);
data = fun_curX(trks, nTrks, trkTime, curTime, cur_trk_ind);
% preprocess data
[cur_trk_ind, cur_gr_ind, data] = fun_curX_preprocess(data, cur_gr_ind, cur_trk_ind);
ind = find(cur_gr_ind==clusterValue(grSele));
trk_mem = cur_trk_ind(ind);
if isempty(trk_mem)
cur_trk_ind = [];
cur_gr_ind = [];
data = [];
break;
end
subdata = data(ind,:);
%%
trk_mem_cur = [];
if ~isempty(cur_color_ind_cluster)
group_size{clusterV,curTime} = size(subdata,1);
A_cur_cluster = A_cur{cur_color_ind_cluster, 1};
rmse_trk_mem_cur = zeros(size(ind,1),1);
for i = 1 : size(ind,1)
trk_mem = trks(cur_trk_ind(ind(i)));
trk_mem_t = find(trk_mem.t >= curTime & trk_mem.t <= curTime+fit_time_len-1);
trk_mem_cur = [trk_mem.x(trk_mem_t)'; trk_mem.y(trk_mem_t)'; ones(1, length(trk_mem_t))];
% use A_cur_cluster to generate trk_mem_cur_gen
trk_mem_cur_gen = ones(3, size(trk_mem_cur,2));
trk_mem_cur_gen(:,1) = trk_mem_cur(:,1);
for fit_t = 2 : size(trk_mem_cur,2)
trk_mem_cur_gen(:,fit_t) = A_cur_cluster * trk_mem_cur_gen(:,fit_t-1);
end
% compute fit error -- RMSE
rmse_trk_mem_cur(i,1) = sqrt(sum(sum((trk_mem_cur_gen-trk_mem_cur).^2)) / size(trk_mem_cur,2));
end
if isempty(ind)
rmse_trk_mem{clusterV,curTime} = [];
else
rmse_trk_mem{clusterV,curTime} = sum(rmse_trk_mem_cur)/length(rmse_trk_mem_cur);
end
end
end
end
%% record: only groupSize larger than threshold
group_size_mean = (sum(cellfun(@sum, group_size),2))./(sum(~cellfun(@isempty,group_size),2));
rmse_trk_mem_mean = (sum(cellfun(@sum, rmse_trk_mem),2))./(sum(~cellfun(@isempty,rmse_trk_mem),2));
group_len = sum(~cellfun(@isempty,rmse_trk_mem),2);
count1 = []; count2 = []; grSize = [];
for gr_n = 1 :length(group_size_mean)
if group_size_mean(gr_n) > group_size_th
collectiveness(file_n).coll_gr = [collectiveness(file_n).coll_gr; rmse_trk_mem(gr_n,:)];
collectiveness(file_n).coll_gr_mean = [collectiveness(file_n).coll_gr_mean; rmse_trk_mem_mean(gr_n,:)];
collectiveness(file_n).gr_len = [collectiveness(file_n).gr_len; group_len(gr_n,:)];
grSize = [grSize, group_size_mean(gr_n)];
% for ms
rmse_temp = cellfun(@sum,rmse_trk_mem(gr_n,:));
rmse_temp = rmse_temp(rmse_temp~=0);
temp1 = round(length(rmse_temp)/2);
count1 = [count1; length(find(rmse_temp(2:temp1)-rmse_temp(1:temp1-1) > 0)) / (temp1-1+eps)];
temp2 = length(rmse_temp) - temp1;
count2 = [count2; length(find(rmse_temp(temp1+1:length(rmse_temp))-rmse_temp(temp1:length(rmse_temp)-1) > 0)) / (temp2+eps)];
end
end
if length(collectiveness(file_n).coll_gr_mean) == 1
collectiveness(file_n).coll_v_mean = collectiveness(file_n).coll_gr_mean;
collectiveness(file_n).coll_v_var = 0;
count = [count1, count2];
% for v_ms
[temp1_val, temp1] = max(abs(count(:,1)./count(:,2)));
[temp2_val, temp2] = max(abs(count(:,2)./count(:,1)));
if temp1_val > temp2_val
collectiveness(file_n).coll_count = count(temp1,:);
elseif temp1_val < temp2_val
collectiveness(file_n).coll_count = count(temp2,:);
else
collectiveness(file_n).coll_count = count(temp1,:);
end
elseif length(collectiveness(file_n).coll_gr_mean) > 1
collectiveness(file_n).coll_v_mean = mean(collectiveness(file_n).coll_gr_mean);
collectiveness(file_n).coll_v_var = std(collectiveness(file_n).coll_gr_mean);
count = [count1, count2];
% for v_ms
[temp1_val, temp1] = max(abs(count(:,1)./count(:,2)));
[temp2_val, temp2] = max(abs(count(:,2)./count(:,1)));
if temp1_val > temp2_val
collectiveness(file_n).coll_count = count(temp1,:);
elseif temp1_val < temp2_val
collectiveness(file_n).coll_count = count(temp2,:);
else
collectiveness(file_n).coll_count = count(temp1,:);
end
end
collectiveness(file_n).file_name = file_name;
fprintf('Done!\n');
end
path_result = [path, 'result_groupDescr_new\'];
mkdir(path_result);
save([path_result,'collectiveness.mat'], 'collectiveness')