-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sift_es25k.py
87 lines (77 loc) · 2.74 KB
/
test_sift_es25k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pickle
import os
import glob
import sys
import getHistogram
import sklearn.cluster as skcluster
from sklearn.decomposition.pca import PCA
from elasticsearch import Elasticsearch
from time import time
index_name = 'idx-sift'
# To specify num clusters, use this command:
# NUM_CLUSTERS=200 python ./test_sift_es.py
num_clusters = int(os.environ.get('NUM_CLUSTERS', 5000))
model_path = './out/model.sift-%s.pickle' % num_clusters
def index_source_image(es, file_id, terms):
# by default we connect to localhost:9200
es.indices.create(index=index_name, ignore=400)
es.index(index=index_name, doc_type="artwork", id=file_id, body={"tags": list(set(terms))})
def build_kmeans_model(descriptors, num_clusters=10000):
print('starting clustering (%s clusters)' % num_clusters)
kmeans = skcluster.KMeans(num_clusters)
start = time()
idxs = kmeans.fit_predict(descriptors)
print('done in %0.3fs' % (time() - start))
return idxs, kmeans
path = './flickr-images/*.jpg'
files=glob.glob(path)
sift = cv2.xfeatures2d.SIFT_create()
def buildDictionary():
dictionarySize = num_clusters
print('building dictionary of %s visual words' % dictionarySize)
#BOW = cv2.BOWKMeansTrainer(dictionarySize)
descriptors=[]
for filename in files:
image = cv2.imread(filename,0)
print('processing/features %s...' % filename,)
#plt.imshow(image), plt.show()
#gray = cv2.cvtColor(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
kp, des= sift.detectAndCompute(image, None)
descriptors.extend(des)
#BOW.add(des)
indexes, model = build_kmeans_model(descriptors, dictionarySize)
print(len(indexes))
print(len(descriptors))
print(model.cluster_centers_)
with open(model_path, 'wb+') as f:
pickle.dump(model, f)
return model
#dictionary created
#dictionary = BOW.cluster()
try:
with open(model_path, 'rb') as f:
model = pickle.load( f)
except FileNotFoundError:
model = buildDictionary()
es = Elasticsearch()
# REPLACE FILENAME with a larger library to index over 25k
#path = './1000testImages/*.jpg'
#path = './images/moreImages/*.jpg'
#files=glob.glob(path)
for filename in files:
image = cv2.imread(filename,0)
print('processing/indexing %s...' % filename,)
#plt.imshow(image), plt.show()
#gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kp, descs= sift.detectAndCompute(image, None)
words = [int(i) for i in model.predict(descs)]
index_source_image(es,filename,words)
print(set(words))
#img2=cv2.drawKeypoints(image,kp,image,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
#plt.imshow(img2)
#plt.show()
print('len kp %s...' % len(kp),)