-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprime.py
90 lines (70 loc) · 2.54 KB
/
prime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import random
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
983, 991, 997]
#
# n -> integer, return if n is prime or not
def isPrime(n):
# Miller-Rabin Primality Test
# 1. Factorize n - 1 as m * 2^k
k = 0
temp = n - 1
while temp % 2 == 0:
temp = temp // 2
k += 1
else:
m = temp
# 2. Primality Test
# Test all entries in the 'primes' list
for a in primes:
x = [pow(a, m * (2 ** i), n) for i in range(0, k)]
# If there is no -1 (n - 1) in the following blank, return 'composite'
if pow(a, m, n) != 1 and none_in_x_is_n(x, n - 1):
return False
elif pow(a, m, n) == 1 or not none_in_x_is_n(x, n - 1):
continue
return True
# generate a 128-bit prime number
def generate_a_prime_number(num_of_bits):
# keep creating a random 16-byte (128-bit) number until there is a prime number
while 1:
num = random.getrandbits(num_of_bits)
if isPrime(num):
return num
else:
continue
# Find SQROOT in Zp where p = 3 mod 4
def sqrt_p_3_mod_4(a, p):
r = pow(a, (p + 1) // 4, p)
return r
# Find SQROOT in Zp where p = 5 mod 8
def sqrt_p_5_mod_8(a, p):
d = pow(a, (p - 1) // 4, p)
r =0
if d == 1:
r = pow(a, (p + 3) // 8, p)
elif d == p - 1:
r = 2 * a * pow(4 * a, (p - 5) // 8, p) % p
return r
# Legendre symbol
def Legendre(a, p):
return pow(a, (p - 1) / 2, p)
#
def egcd(a, b):
if a == 0:
return b, 0, 1
else:
gcd, y, x = egcd(b % a, a)
return gcd, x - (b // a) * y, y
# Additional functions
def none_in_x_is_n(x, n):
for i in x:
if i == n:
return False
return True