-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict.py
52 lines (41 loc) · 1.76 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import time
import argparse
import pandas as pd
from NNClassifier import NeuralClassifier
from constants import c
import utils
import os
parser = argparse.ArgumentParser(description='VirNet a deep neural network model for virus identification')
parser.add_argument('--input_dim', dest='input_dim', type=int, default=500, help='input dim (default: 500)')
parser.add_argument('--input', dest='input_path', help='input file')
parser.add_argument('--output', dest='output_path', default='output.csv', help='output file csv')
parser.add_argument('--model_dir', dest='model_dir',default='data/saved_model', help='the path of the model')
args = parser.parse_args()
def run_pred(model,input_data):
print('Start Predictions')
start=time.time()
y_prop=model.predict(input_data)
end=time.time()
print('Predicting time\t{0:.2f} seconds\n'.format(end-start))
return y_prop
def save_pred(input_data,predictions,output_path):
print('Saving Predictions to {0}'.format(output_path))
df=pd.DataFrame(input_data['ID'],columns=['ID'])
if 'DESC' in input_data.columns:
df['DESC']=input_data['DESC']
df['score']=predictions
df['result']=utils.predict_classes(predictions)
df.to_csv(output_path)
def main():
print('Starting VirNet')
# Create Model
model = NeuralClassifier(input_dim=args.input_dim, ngrams=c.MODEL.ngrams, model_dir = args.model_dir)
## Load Data
df_data=utils.load_data(args.input_path)
x_data = model.tokenize(df_data['SEQ'].values,ngrams=c.MODEL.ngrams)
model_path = os.path.join(args.model_dir,'model_{}.h5'.format(args.input_dim))
model.load_model(model_path)
predictions=run_pred(model,x_data)
save_pred(df_data,predictions,args.output_path)
if __name__ == "__main__":
main()