-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
519 lines (439 loc) · 21.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import argparse
import os
import datetime
import logging
import time, itertools
import math
import random
import numpy as np
from collections import OrderedDict
import torch
import torch.nn.functional as F
from core.configs import cfg
from core.datasets import build_dataset
from core.models import build_adversarial_discriminator_cls, build_adversarial_discriminator_bin, build_feature_extractor, build_classifier
from core.solver import adjust_learning_rate
from core.models.checkpoint import load_checkpoint
from core.utils.misc import mkdir, AverageMeter, intersectionAndUnionGPU, resize
from core.utils.logger import setup_logger
from core.utils.metric_logger import MetricLogger
def get_share_weight(domain_out, before_softmax, class_temperature=10.0):
before_softmax = before_softmax / class_temperature
after_softmax = F.softmax(before_softmax, dim=1)
entropy = torch.sum(- after_softmax * torch.log(after_softmax + 1e-10), dim=1, keepdim=True)
entropy_norm = entropy / np.log(after_softmax.size(1))
weight = entropy_norm - domain_out
return weight.detach()
def normalize_weight(x):
min_val = x.min()
max_val = x.max()
x = (x - min_val) / (max_val - min_val)
return x.detach()
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "")] = value
return stripped_state_dict
def soft_label_cross_entropy(pred, soft_label, pixel_weights=None):
N, C, H, W = pred.shape
loss = -soft_label.float()*torch.log(pred)
if pixel_weights is None:
return torch.mean(torch.sum(loss, dim=1))
return torch.mean(pixel_weights*torch.sum(loss, dim=1))
def train(cfg, local_rank, distributed):
logger = logging.getLogger("TransDA.trainer")
logger.info("Start training")
device = torch.device(cfg.MODEL.DEVICE)
batch_size = cfg.SOLVER.BATCH_SIZE
feature_extractor = build_feature_extractor(cfg)
feature_extractor.init_weights()
feature_extractor.to(device)
load_checkpoint(feature_extractor, cfg.MODEL.WEIGHTS, strict=False)
feature_extractor_ema = build_feature_extractor(cfg)
feature_extractor_ema.init_weights()
feature_extractor_ema.to(device)
load_checkpoint(feature_extractor_ema, cfg.MODEL.WEIGHTS, strict=False)
classifier, aux = build_classifier(cfg)
classifier.init_weights()
aux.init_weights()
classifier.to(device)
aux.to(device)
classifier_ema, aux_ema = build_classifier(cfg)
classifier_ema.init_weights()
aux_ema.init_weights()
classifier_ema.to(device)
aux_ema.to(device)
decay = cfg.decay
if cfg.SOLVER.DIS == 'binary':
model_D = build_adversarial_discriminator_bin(cfg)
else:
model_D = build_adversarial_discriminator_cls(cfg)
model_D.to(device)
model_Dis = build_adversarial_discriminator_bin(cfg)
model_Dis.to(device)
if local_rank==0:
print(feature_extractor)
print(classifier)
print(aux)
print(model_D)
print(model_Dis)
if distributed:
batch_size = int(cfg.SOLVER.BATCH_SIZE / torch.distributed.get_world_size())
classifier = torch.nn.SyncBatchNorm.convert_sync_batchnorm(classifier)
aux = torch.nn.SyncBatchNorm.convert_sync_batchnorm(aux)
pg1 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
feature_extractor = torch.nn.parallel.DistributedDataParallel(
feature_extractor, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg1
)
pg2 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
classifier = torch.nn.parallel.DistributedDataParallel(
classifier, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg2
)
pg3 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
aux = torch.nn.parallel.DistributedDataParallel(
aux, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg3
)
pg4 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
model_D = torch.nn.parallel.DistributedDataParallel(
model_D, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg4
)
pg5 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
model_Dis = torch.nn.parallel.DistributedDataParallel(
model_Dis, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg5
)
pg6 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
feature_extractor_ema = torch.nn.parallel.DistributedDataParallel(
feature_extractor_ema, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg6
)
pg7 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
classifier_ema = torch.nn.parallel.DistributedDataParallel(
classifier_ema, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg7
)
pg8 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
aux_ema = torch.nn.parallel.DistributedDataParallel(
aux_ema, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg8
)
torch.autograd.set_detect_anomaly(True)
torch.distributed.barrier()
optimizer_fea = torch.optim.AdamW(feature_extractor.parameters(), lr=cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), weight_decay=0.01)
optimizer_cls = torch.optim.AdamW(itertools.chain(classifier.parameters(),aux.parameters()), lr=cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), weight_decay=0.01)
optimizer_D = torch.optim.Adam(itertools.chain(model_D.parameters(), model_Dis.parameters()), lr=cfg.SOLVER.BASE_LR_D, betas=(0.9, 0.99))
output_dir = cfg.OUTPUT_DIR
pth_dir = output_dir.replace('results','pth')
if pth_dir:
mkdir(pth_dir)
save_to_disk = local_rank == 0
iteration = 0
src_train_data = build_dataset(cfg, mode='train', is_source=True)
tgt_train_data = build_dataset(cfg, mode='train', is_source=False)
if distributed:
src_train_sampler = torch.utils.data.distributed.DistributedSampler(src_train_data)
tgt_train_sampler = torch.utils.data.distributed.DistributedSampler(tgt_train_data)
else:
src_train_sampler = None
tgt_train_sampler = None
src_train_loader = torch.utils.data.DataLoader(src_train_data, batch_size=batch_size, shuffle=(src_train_sampler is None), num_workers=4, pin_memory=True, sampler=src_train_sampler, drop_last=True)
tgt_train_loader = torch.utils.data.DataLoader(tgt_train_data, batch_size=batch_size, shuffle=(tgt_train_sampler is None), num_workers=4, pin_memory=True, sampler=tgt_train_sampler, drop_last=True)
criterion = torch.nn.CrossEntropyLoss(ignore_index=cfg.INPUT.IGNORE_LABEL)
bce_loss = torch.nn.BCELoss()
test_stats = []
max_iters = cfg.SOLVER.MAX_ITER
logger.info("Start training")
meters = MetricLogger(delimiter=" ")
feature_extractor.train()
feature_extractor_ema.train()
classifier.train()
classifier_ema.train()
aux.train()
aux_ema.train()
model_D.train()
model_Dis.train()
start_training_time = time.time()
end = time.time()
for i, ((src_input, src_label, src_name), (tgt_input, tgt_label, _)) in enumerate(zip(src_train_loader, tgt_train_loader)):
data_time = time.time() - end
current_lr = adjust_learning_rate(cfg.SOLVER.LR_METHOD, cfg.SOLVER.BASE_LR, iteration, 1500, 1e-6, max_iters)
current_lr_D = adjust_learning_rate(cfg.SOLVER.LR_METHOD, cfg.SOLVER.BASE_LR_D, iteration, 0, 0, max_iters, power=cfg.SOLVER.LR_POWER)
for index in range(len(optimizer_fea.param_groups)):
optimizer_fea.param_groups[index]['lr'] = current_lr
for index in range(len(optimizer_cls.param_groups)):
optimizer_cls.param_groups[index]['lr'] = current_lr
for index in range(len(optimizer_D.param_groups)):
optimizer_D.param_groups[index]['lr'] = current_lr_D
src_input = src_input.cuda(non_blocking=True)
src_label = src_label.cuda(non_blocking=True).long()
tgt_input = tgt_input.cuda(non_blocking=True)
tgt_label = tgt_label.cuda(non_blocking=True).long()
src_size = src_input.shape[-2:]
tgt_size = tgt_input.shape[-2:]
optimizer_fea.zero_grad()
optimizer_cls.zero_grad()
src_fea = feature_extractor(src_input)
src_pred = classifier(src_fea)
src_aux = aux(src_fea)
src_pred = resize(
input=src_pred,
size=src_size,
mode='bilinear',
align_corners=False)
src_aux = resize(
input=src_aux,
size=src_size,
mode='bilinear',
align_corners=False)
loss_seg_src = 1.0*criterion(src_pred,src_label)
loss_aux_src = 0.4*criterion(src_aux,src_label)
with torch.no_grad():
tgt_fea_ema = feature_extractor_ema(tgt_input)
tgt_pred_ema = classifier_ema(tgt_fea_ema)
tgt_pred_ema = resize(
input=tgt_pred_ema,
size=tgt_size,
mode='bilinear',
align_corners=False)
if cfg.SOLVER.DIS == 'class':
# generate soft labels
src_soft_label = F.softmax(src_pred, dim=1).detach()
src_soft_label[src_soft_label>0.9] = 0.9
tgt_soft_label = F.softmax(tgt_pred_ema, dim=1).detach()
tgt_soft_label[tgt_soft_label>0.9] = 0.9
src_fea_D = src_fea[-2]
src_Dis_pred = model_Dis(src_fea_D.detach(), src_size)
source_share_weight = get_share_weight(src_Dis_pred, src_pred, class_temperature=10.0)
source_share_weight = normalize_weight(source_share_weight)
src_D_pred = model_D(src_fea_D, src_size)
if cfg.SOLVER.DIS == 'binary':
loss_adv_src = 0.001*soft_label_cross_entropy((torch.ones_like(src_D_pred)-src_D_pred).clamp(min=1e-7, max=1.0), torch.ones_like(src_D_pred),source_share_weight)
else:
loss_adv_src = 0.001*soft_label_cross_entropy(F.softmax(src_D_pred, dim=1).clamp(min=1e-7, max=1.0), torch.cat((src_soft_label,torch.zeros_like(src_soft_label)), dim=1),source_share_weight)
(loss_seg_src+loss_aux_src+loss_adv_src).backward()
if cfg.warm_up == False:
tgt_fea = feature_extractor(tgt_input)
tgt_pred = classifier(tgt_fea)
tgt_aux = aux(tgt_fea)
tgt_pred = resize(
input=tgt_pred,
size=tgt_size,
mode='bilinear',
align_corners=False)
tgt_aux = resize(
input=tgt_aux,
size=tgt_size,
mode='bilinear',
align_corners=False)
loss_seg_tgt = 1.0*criterion(tgt_pred,tgt_label)
loss_aux_tgt = 0.4*criterion(tgt_aux,tgt_label)
(loss_seg_tgt+loss_aux_tgt).backward()
meters.update(loss_seg_tgt=loss_seg_tgt.item())
meters.update(loss_aux_tgt=loss_aux_tgt.item())
optimizer_fea.step()
optimizer_cls.step()
meters.update(loss_seg_src=loss_seg_src.item())
meters.update(loss_aux_src=loss_aux_src.item())
meters.update(loss_adv_src=loss_adv_src.item())
optimizer_D.zero_grad()
src_fea_D = src_fea[-2]
src_Dis_pred = model_Dis(src_fea_D.detach(), src_size)
loss_Dis_src = 0.5*bce_loss(src_Dis_pred, torch.ones_like(src_Dis_pred))
loss_Dis_src.backward()
tgt_fea_D = tgt_fea_ema[-2]
tgt_Dis_pred = model_Dis(tgt_fea_D.detach(), tgt_size)
loss_Dis_tgt = 0.5*bce_loss(tgt_Dis_pred, torch.zeros_like(tgt_Dis_pred))
loss_Dis_tgt.backward()
source_share_weight = get_share_weight(src_Dis_pred, src_pred, class_temperature=10.0)
source_share_weight = normalize_weight(source_share_weight)
target_share_weight = -get_share_weight(tgt_Dis_pred, tgt_pred_ema, class_temperature=1.0)
target_share_weight = normalize_weight(target_share_weight)
src_D_pred = model_D(src_fea_D.detach(), src_size)
if cfg.SOLVER.DIS == 'binary':
loss_D_src = 0.5*soft_label_cross_entropy(src_D_pred.clamp(min=1e-7, max=1.0), torch.ones_like(src_D_pred), source_share_weight)
else:
loss_D_src = 0.5*soft_label_cross_entropy(F.softmax(src_D_pred, dim=1).clamp(min=1e-7, max=1.0), torch.cat((torch.zeros_like(src_soft_label),src_soft_label), dim=1), source_share_weight)
loss_D_src.backward()
tgt_D_pred = model_D(tgt_fea_D.detach(), tgt_size)
if cfg.SOLVER.DIS == 'binary':
loss_D_tgt = 0.5*soft_label_cross_entropy((torch.ones_like(tgt_D_pred)-tgt_D_pred).clamp(min=1e-7, max=1.0), torch.ones_like(tgt_D_pred), target_share_weight)
else:
loss_D_tgt = 0.5*soft_label_cross_entropy(F.softmax(tgt_D_pred, dim=1).clamp(min=1e-7, max=1.0), torch.cat((tgt_soft_label,torch.zeros_like(tgt_soft_label)), dim=1), target_share_weight)
loss_D_tgt.backward()
optimizer_D.step()
meters.update(loss_D_src=loss_D_src.item())
meters.update(loss_D_tgt=loss_D_tgt.item())
meters.update(loss_Dis_src=loss_Dis_src.item())
meters.update(loss_Dis_tgt=loss_Dis_tgt.item())
iteration+=1
batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time)
eta_seconds = meters.time.global_avg * (cfg.SOLVER.STOP_ITER - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % 20 == 0 or iteration == max_iters:
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer_fea.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
with torch.no_grad():
for param_q, param_k in zip(feature_extractor.parameters(), feature_extractor_ema.parameters()):
param_k.data = param_k.data * (1-decay) + param_q.data * decay
for param_q, param_k in zip(classifier.parameters(), classifier_ema.parameters()):
param_k.data = param_k.data * (1-decay) + param_q.data * decay
for param_q, param_k in zip(aux.parameters(), aux_ema.parameters()):
param_k.data = param_k.data * (1-decay) + param_q.data * decay
if iteration == cfg.SOLVER.STOP_ITER:
rec = run_test(cfg, (feature_extractor_ema, classifier_ema), local_rank, distributed)
rec['iters']=iteration
test_stats.append(rec)
if (iteration == cfg.SOLVER.STOP_ITER) and save_to_disk:
filename = os.path.join(pth_dir, "model_last.pth")
time.sleep(120)
torch.save({'iteration': iteration,
'feature_extractor': feature_extractor_ema.state_dict(),
'classifier':classifier_ema.state_dict(),
'aux':aux_ema.state_dict(),
'model_D': model_D.state_dict(),
'model_Dis': model_Dis.state_dict()
}, filename)
logger.info('Save in{}.'.format(iteration))
with open(os.path.join(output_dir, 'test_results.csv'),'w') as handle:
for i, rec in enumerate(test_stats):
if i==0:
handle.write(','.join(list(rec.keys()))+'\n')
line = [str(rec[key]) for key in rec.keys()]
handle.write(','.join(line)+'\n')
if iteration == cfg.SOLVER.MAX_ITER:
break
if iteration == cfg.SOLVER.STOP_ITER:
break
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (cfg.SOLVER.STOP_ITER)
)
)
def run_test(cfg, model, local_rank, distributed):
logger = logging.getLogger("TransDA.tester")
if local_rank==0:
logger.info('>>>>>>>>>>>>>>>> Start Testing >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
feature_extractor, classifier = model
test_data = build_dataset(cfg, mode='test', is_source=False)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True, sampler=None)
feature_extractor.eval()
classifier.eval()
end = time.time()
with torch.no_grad():
for i, (x, y, _) in enumerate(test_loader):
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True).long()
size = y.shape[-2:]
pred = classifier(feature_extractor(x))
pred = resize(
input=pred,
size=y.shape[-2:],
mode='bilinear',
align_corners=False)
output = pred.max(1)[1]
intersection, union, target = intersectionAndUnionGPU(output, y, cfg.MODEL.NUM_CLASSES, cfg.INPUT.IGNORE_LABEL)
intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
batch_time.update(time.time() - end)
end = time.time()
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
rec = {'mIoU':mIoU}
if local_rank==0:
logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(cfg.MODEL.NUM_CLASSES):
rec[str(i)] = iou_class[i]
logger.info('Class_{} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, iou_class[i], accuracy_class[i]))
feature_extractor.train()
classifier.train()
return rec
def main():
parser = argparse.ArgumentParser(description="PyTorch Semantic Segmentation Training")
parser.add_argument("-cfg",
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("TransDA", output_dir, args.local_rank)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
# np.random.seed(cfg.SOLVER.SEED)
# random.seed(cfg.SOLVER.SEED)
# torch.manual_seed(cfg.SOLVER.SEED)
# torch.cuda.manual_seed_all(cfg.SOLVER.SEED)
# torch.cuda.set_rng_state(torch.cuda.get_rng_state())
# torch.cuda.set_rng_state_all(torch.cuda.get_rng_state_all())
# torch.backends.cudnn.deterministic = True
train(cfg, args.local_rank, args.distributed)
if __name__ == "__main__":
main()