-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
78 lines (71 loc) · 2.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
import sys
from options.train_options import TrainOptions
from data import create_dataloader
from models import create_model
from utils.util import SaveResults
import numpy as np
import torch
import cv2
cv2.setNumThreads(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
np.random.seed(0)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
if __name__ == '__main__':
# Initialize training options and dataloader
opt = TrainOptions().parse()
train_data_loader = create_dataloader(opt)
n_iters_epoch = len(train_data_loader)
max_epoch = opt.n_train_epochs
print('#training images = %d' % n_iters_epoch)
finished_training = 0
# Initialize model
model = create_model(opt)
model.setup(opt)
model.total_images = 0
model.total_steps = 0
model.experiment_name = opt.experiment_name
save_results = SaveResults(opt)
# If in the second step (joint training) load pretrained models
if opt.load_pretrained:
model.load_networks('latest_pretrain')
for epoch in range(opt.epoch_count, max_epoch+1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
model.epoch = epoch
# Epoch loop
print("training stage (epoch: %s) starting...................." % epoch)
for ind, data in enumerate(train_data_loader):
iter_start_time = time.time()
if model.total_images % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
model.total_images += opt.batchSize
model.total_steps += 1
epoch_iter += 1
model.set_input(data)
model.optimize_parameters()
if model.total_images % (opt.batchSize*int(opt.print_freq/opt.batchSize)) == 0:
# These lines prints losses
losses = model.get_current_losses()
t = (time.time() - iter_start_time)
save_results.print_current_losses(
epoch, epoch_iter, n_iters_epoch, model.total_steps, losses, t, t_data)
iter_data_time = time.time()
if model.total_steps == opt.n_train_iterations:
# In the second step we stop after N training iterations
print('Finished training')
finished_training = 1
break
if finished_training:
break
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, model.total_steps))
model.save_networks(str(epoch)+'_'+model.experiment_name)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, max_epoch, time.time() - epoch_start_time))
# Save final model
model.save_networks('latest_'+model.experiment_name)