-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathneural_net.go
513 lines (430 loc) · 13.7 KB
/
neural_net.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
package ml
import (
"fmt"
"github.com/alonsovidales/go_matrix"
"io/ioutil"
"math"
"math/rand"
"strconv"
"strings"
"time"
)
// NeuralNet Neural network representation, the X and Y properties are to be
// used with training proposals
type NeuralNet struct {
// Training set of values for each feature, the first dimension are the test cases
X [][]float64
// The training set with values to be predicted
Y [][]float64
// 1st dim -> layer, 2nd dim -> neuron, 3rd dim theta
Theta [][][]float64
}
// CostFunction Calcualtes the cost function for the training set stored in the
// X and Y properties of the instance, and with the theta configuration.
// The lambda parameter controls the degree of regularization (0 means
// no-regularization, infinity means ignoring all input variables because all
// coefficients of them will be zero)
// The calcGrad param in case of true calculates the gradient in addition of the
// cost, and in case of false, only calculates the cost
func (nn *NeuralNet) CostFunction(lambda float64, calcGrad bool) (j float64, grad [][][]float64, err error) {
if len(nn.Y) == 0 || len(nn.X) == 0 || len(nn.Theta) == 0 {
err = fmt.Errorf("the lenght of the X, Y or Theta params are zero")
return
}
if len(nn.Y) != len(nn.X) {
err = fmt.Errorf(
"the length of the X parameter doesn't corresponds with the length of the Y parameter")
return
}
if len(nn.Theta[len(nn.Theta)-1]) != len(nn.Y[0]) {
err = fmt.Errorf(
"the length of the last theta layer should to correspond with the length of the expected results")
return
}
// Calculate the hipotesis for all the layers
hx := nn.X
for i := 0; i < len(nn.Theta); i++ {
hx = mt.Apply(mt.Mult(addBias(hx), mt.Trans(nn.Theta[i])), sigmoid)
}
j = mt.SumAll(mt.Sub(
mt.MultElems(mt.Apply(nn.Y, neg), mt.Apply(hx, math.Log)),
mt.MultElems(mt.Apply(nn.Y, oneMinus), mt.Apply(mt.Apply(hx, oneMinus), math.Log)))) / float64(len(nn.X))
// Regularization
thetaReg := 0.0
// Remove the bias theta for regularizarion
for _, theta := range nn.Theta {
auxTheta := make([][]float64, len(theta))
for i, thetaLine := range theta {
auxTheta[i] = thetaLine[1:]
}
thetaReg += mt.SumAll(mt.Apply(auxTheta, powTwo))
}
j += (lambda * thetaReg) / float64(2*len(nn.Y))
if !calcGrad {
return
}
// Backpropagation
tmpGrad := make([][][]float64, len(nn.Theta))
// Initialize the tmpGrad to contain matrix with the same size as thetas
for i, theta := range nn.Theta {
tmpGrad[i] = make([][]float64, len(theta))
for j := 0; j < len(theta); j++ {
tmpGrad[i][j] = make([]float64, len(theta[0]))
}
}
for i := 0; i < len(nn.X); i++ {
// FW
a := make([][][]float64, len(nn.Theta)+1)
a[0] = addBias([][]float64{nn.X[i]})
z := make([][][]float64, len(nn.Theta))
for i := 0; i < len(nn.Theta); i++ {
z[i] = mt.Mult(a[i], mt.Trans(nn.Theta[i]))
a[i+1] = addBias(mt.Apply(z[i], sigmoid))
}
// BW
delta := make([][][]float64, len(nn.Theta))
delta[len(nn.Theta)-1] = mt.Sub([][]float64{a[len(nn.Theta)][0][1:]}, [][]float64{nn.Y[i]})
for d := len(nn.Theta) - 2; d >= 0; d-- {
delta[d] = mt.MultElems(mt.Mult(delta[d+1], nn.Theta[d+1]), addBias(mt.Apply(z[d], sigmoidGradient)))
delta[d] = [][]float64{delta[d][0][1:]}
}
for d := 0; d < len(tmpGrad); d++ {
tmpGrad[d] = mt.Sum(tmpGrad[d], mt.Mult(mt.Trans([][]float64{delta[d][0]}), a[d]))
}
}
grad = make([][][]float64, len(nn.Theta))
tmp := 0.0
for i := 0; i < len(nn.Theta[0]); i++ {
tmp += nn.Theta[0][i][0]
}
for i := 0; i < len(tmpGrad); i++ {
grad[i] = mt.Sum(mt.MultBy(tmpGrad[i], 1/float64(len(nn.X))), mt.MultBy(removeBias(nn.Theta[i]), lambda/float64(len(nn.X))))
}
return
}
// GetPerformance Returns the performance of the neural network with the current
// set of samples. The performance is calculated as: matches / total_samples
func (nn *NeuralNet) GetPerformance(verbose bool) (cost float64, performance float64) {
matches := 0.0
for i := 0; i < len(nn.X); i++ {
match := true
prediction := nn.Hipotesis(nn.X[i])
for i := 0; i < len(prediction); i++ {
if prediction[i] > 0.5 {
prediction[i] = 1
} else {
prediction[i] = 0
}
}
checkHip:
for h := 0; h < len(prediction); h++ {
if nn.Y[i][h] != prediction[h] {
match = false
break checkHip
}
}
if match {
matches++
}
}
cost, _, _ = nn.CostFunction(0, false)
performance = matches / float64(len(nn.Y))
return
}
// Hipotesis returns the hipotesis calculation for the sample "x" using the
// thetas of nn.Theta
func (nn *NeuralNet) Hipotesis(x []float64) (result []float64) {
aux := [][]float64{x}
for _, theta := range nn.Theta {
aux = mt.Apply(mt.Mult(addBias(aux), mt.Trans(theta)), sigmoid)
}
return aux[0]
}
// InitializeThetas Random inizialization of the thetas to break the simetry.
// The slice "layerSizes" will contain on each element, the size of the layer to
// be initialized, the first layer is the input one, and last layer will
// correspond to the output layer
func (nn *NeuralNet) InitializeThetas(layerSizes []int) {
rand.Seed(int64(time.Now().Nanosecond()))
epsilon := math.Sqrt(6) / math.Sqrt(float64(layerSizes[0]+layerSizes[len(layerSizes)-1]))
nn.Theta = make([][][]float64, len(layerSizes)-1)
for l := 1; l < len(layerSizes); l++ {
nn.Theta[l-1] = make([][]float64, layerSizes[l])
for n := 0; n < layerSizes[l]; n++ {
nn.Theta[l-1][n] = make([]float64, layerSizes[l-1]+1)
for i := 0; i < layerSizes[l-1]+1; i++ {
if rand.Float64() > 0.5 {
nn.Theta[l-1][n][i] = (rand.Float64() * epsilon)
} else {
nn.Theta[l-1][n][i] = 0 - (rand.Float64() * epsilon)
}
}
}
}
return
}
// MinimizeCost This metod splits the samples contained in the NeuralNet instance
// in three sets (60%, 20%, 20%): training, cross validation and test. In order
// to calculate the optimal theta, after try with different lambda values on the
// training set and compare the performance obtained with the cross validation
// set to get the lambda with a better performance in the cross validation set.
// After calculate the best lambda, merges the training and cross validation
// sets and trains the neural network with the 80% of the samples.
// The data can be shuffled in order to obtain a better distribution before
// divide it in groups
func (nn *NeuralNet) MinimizeCost(maxIters int, suffleData bool, verbose bool) (finalCost float64, performance float64, trainingData *NeuralNet, testData *NeuralNet) {
lambdas := []float64{0.0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300}
if suffleData {
nn = nn.shuffle()
}
// Get the 60% of the nn as training nn, 20% as cross validation, and
// the remaining 20% as test nn
training := int64(float64(len(nn.X)) * 0.6)
cv := int64(float64(len(nn.X)) * 0.8)
trainingData = &NeuralNet{
X: nn.X[:training],
Y: nn.Y[:training],
Theta: nn.Theta,
}
cvData := &NeuralNet{
X: nn.X[training:cv],
Y: nn.Y[training:cv],
Theta: nn.Theta,
}
testData = &NeuralNet{
X: nn.X[cv:],
Y: nn.Y[cv:],
Theta: nn.Theta,
}
// Launch a process for each lambda in order to obtain the one with best
// performance
bestJ := math.Inf(1)
bestLambda := 0.0
initTheta := copyTheta(trainingData.Theta)
for _, posLambda := range lambdas {
if verbose {
fmt.Println("Checking Lambda:", posLambda)
}
trainingData.Theta = copyTheta(initTheta)
Fmincg(trainingData, posLambda, 3, verbose)
cvData.Theta = trainingData.Theta
j, _, _ := cvData.CostFunction(posLambda, false)
if bestJ > j {
bestJ = j
bestLambda = posLambda
}
}
// Include the cross validation cases into the training for the final train
trainingData.X = append(trainingData.X, cvData.X...)
trainingData.Y = append(trainingData.Y, cvData.Y...)
if verbose {
fmt.Println("Lambda:", bestLambda)
fmt.Println("Training with the 80% of the samples...")
}
Fmincg(trainingData, bestLambda, maxIters, verbose)
testData.Theta = trainingData.Theta
nn.Theta = trainingData.Theta
finalCost, performance = testData.GetPerformance(verbose)
return
}
// NewNeuralNetFromCsv Loads the informaton contained in the specified file
// paths and returns a NeuralNet instance.
// Each input file should contain a row by sample, and the values separated by a
// single space.
// To load the thetas specify on thetaSrc the file paths that contains each of
// the layer values. The order of this paths will represent the order of the
// layers.
// In case of need only to load the theta paramateres, specify a empty string on
// the xSrc and ySrc parameters.
func NewNeuralNetFromCsv(xSrc string, ySrc string, thetaSrc []string) (result *NeuralNet) {
result = new(NeuralNet)
if xSrc != "" {
// Parse the X params
strInfo, err := ioutil.ReadFile(xSrc)
if err != nil {
panic(err)
}
trainingData := strings.Split(string(strInfo), "\n")
for _, line := range trainingData {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.X = append(result.X, values)
}
}
if ySrc != "" {
// Parse the Y params
strInfo, err := ioutil.ReadFile(ySrc)
if err != nil {
panic(err)
}
trainingData := strings.Split(string(strInfo), "\n")
for _, line := range trainingData {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.Y = append(result.Y, values)
}
}
// Parse the Theta params
for _, thetaNSrc := range thetaSrc {
strInfo, err := ioutil.ReadFile(thetaNSrc)
if err != nil {
panic(err)
}
trainingData := strings.Split(string(strInfo), "\n")
theta := [][]float64{}
for _, line := range trainingData {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
theta = append(theta, values)
}
result.Theta = append(result.Theta, theta)
}
return
}
// SaveThetas Store all the current theta values of the instance in the
// "targetDir" directory.
// This method will create a file for each layer of theta called theta_X.txt
// where X is the layer contained on the file.
func (nn *NeuralNet) SaveThetas(targetDir string) (files []string) {
fileCont := make([]string, len(nn.Theta))
for i := 0; i < len(nn.Theta); i++ {
for j := 0; j < len(nn.Theta[i]); j++ {
s := []string{}
for k := 0; k < len(nn.Theta[i][j]); k++ {
s = append(s, strconv.FormatFloat(nn.Theta[i][j][k], 'e', -1, 64))
}
fileCont[i] += strings.Join(s, " ") + "\n"
}
}
files = make([]string, len(nn.Theta))
for i := 0; i < len(nn.Theta); i++ {
files[i] = fmt.Sprintf("%s/theta_%d.txt", targetDir, i)
ioutil.WriteFile(
files[i],
[]byte(fileCont[i]),
0644)
}
return
}
// addBias Returns a copy of the "m" two dim slice with a one added at the
// beginning of each row
func addBias(m [][]float64) (result [][]float64) {
result = make([][]float64, len(m))
for i := 0; i < len(m); i++ {
result[i] = append([]float64{1}, m[i]...)
}
return
}
// copyTheta Returns a copy of the "theta" two dim slice allocated in a separate
// memory space
func copyTheta(theta [][][]float64) (copyTheta [][][]float64) {
copyTheta = make([][][]float64, len(theta))
for i := 0; i < len(theta); i++ {
copyTheta[i] = make([][]float64, len(theta[i]))
for j := 0; j < len(theta[i]); j++ {
copyTheta[i][j] = make([]float64, len(theta[i][j]))
for k := 0; k < len(theta[i][j]); k++ {
copyTheta[i][j][k] = theta[i][j][k]
}
}
}
return
}
func (nn *NeuralNet) getTheta() [][][]float64 {
return nn.Theta
}
// removeBias Returns a copy of the given two dim slice without the firs element
// of each row
func removeBias(x [][]float64) (result [][]float64) {
result = make([][]float64, len(x))
for i := 0; i < len(x); i++ {
result[i] = append([]float64{0}, x[i][1:]...)
}
return
}
// rollThetasGrad returns a 1 x n matrix with the thetas concatenated
func (nn *NeuralNet) rollThetasGrad(x [][][]float64) [][]float64 {
result := []float64{}
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i][0]); j++ {
for k := 0; k < len(x[i]); k++ {
result = append(result, x[i][k][j])
}
}
}
return [][]float64{result}
}
func (nn *NeuralNet) setTheta(t [][][]float64) {
nn.Theta = t
}
// shuffle redistribute randomly all the X and Y rows of the instance
func (nn *NeuralNet) shuffle() (shuffledData *NeuralNet) {
aux := make([][]float64, len(nn.X))
copy(aux, nn.X)
for i := 0; i < len(aux); i++ {
aux[i] = append(aux[i], nn.Y[i]...)
}
dest := make([][]float64, len(aux))
rand.Seed(int64(time.Now().Nanosecond()))
for i, v := range rand.Perm(len(aux)) {
dest[v] = aux[i]
}
shuffledData = &NeuralNet{
X: make([][]float64, len(nn.X)),
Y: make([][]float64, len(nn.Y)),
}
for i := 0; i < len(dest); i++ {
shuffledData.Y[i] = dest[i][len(dest[i])-len(nn.Y[0]):]
shuffledData.X[i] = dest[i][:len(dest[i])-len(nn.Y[0])]
}
shuffledData.Theta = nn.Theta
return
}
func sigmoidGradient(x float64) float64 {
return sigmoid(x) * (1 - sigmoid(x))
}
// unrollThetasGrad Returns the 1 x n matrix as the multilayer theta way
func (nn *NeuralNet) unrollThetasGrad(x [][]float64) (r [][][]float64) {
pos := 0
r = make([][][]float64, len(nn.Theta))
for i := 0; i < len(nn.Theta); i++ {
r[i] = make([][]float64, len(nn.Theta[i]))
for j := 0; j < len(nn.Theta[i]); j++ {
r[i][j] = make([]float64, len(nn.Theta[i][j]))
}
for j := 0; j < len(nn.Theta[i][0]); j++ {
for k := 0; k < len(nn.Theta[i]); k++ {
r[i][k][j] = x[0][pos]
pos++
}
}
}
return
}