-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathcollaborative_filtering.go
306 lines (272 loc) · 8.39 KB
/
collaborative_filtering.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
package ml
import (
"github.com/alonsovidales/go_matrix"
"io/ioutil"
"math/rand"
"strconv"
"strings"
"time"
)
// CollaborativeFilter Collaborative filtering implementation, this algorithm is
// able to determine the items with a best fit for items not yet rated in a
// matrix of users and items calcifications:
// http://en.wikipedia.org/wiki/Collaborative_filtering
type CollaborativeFilter struct {
// User ratios by item (rows), and user (cols)
Ratings [][]float64
// Matrix for classified or not items by user, use 0.0 for unclissified, 1.0 for classified
AvailableRatings [][]float64
// Martrix with items and features
ItemsTheta [][]float64
Theta [][]float64
// Used for mean normalization, will store the mean ratings for all the items
Means []float64
Features int
Predictions [][]float64
}
// GetPredictionsFor returns the predictions for a single user in the given
// position
func (cf *CollaborativeFilter) GetPredictionsFor(userPos int) (preds []float64) {
preds = make([]float64, len(cf.Ratings))
for i, pred := range cf.Predictions {
preds[i] = pred[userPos] + cf.Means[i]
}
return
}
// MakePredictions prepare the predictions for all the users
func (cf *CollaborativeFilter) MakePredictions() {
cf.Predictions = mt.MultTrans(cf.ItemsTheta, cf.Theta)
}
// AddUser adds a single user ratings to the user ratings matrix and prepares
// the theta parameters, to calculate the recommendations for this user
func (cf *CollaborativeFilter) AddUser(votes map[int]float64) {
for i := 0; i < len(cf.Ratings); i++ {
if score, ok := votes[i]; ok {
cf.Ratings[i] = append(cf.Ratings[i], score)
cf.AvailableRatings[i] = append(cf.AvailableRatings[i], 1.0)
} else {
cf.Ratings[i] = append(cf.Ratings[i], 0)
cf.AvailableRatings[i] = append(cf.AvailableRatings[i], 0.0)
}
}
rand.Seed(int64(time.Now().Nanosecond()))
cf.Theta = append(cf.Theta, make([]float64, cf.Features))
for i := 0; i < cf.Features; i++ {
if rand.Float64() > 0.5 {
cf.Theta[len(cf.Theta)-1][i] = rand.Float64()
} else {
cf.Theta[len(cf.Theta)-1][i] = 0 - rand.Float64()
}
}
}
// CalcMeans calculates the means for all the items and store them
func (cf *CollaborativeFilter) CalcMeans() {
cf.Means = make([]float64, len(cf.Ratings))
width := len(cf.Ratings[0])
for i := 0; i < len(cf.Ratings); i++ {
scores := 0.0
for j := 0; j < width; j++ {
if cf.AvailableRatings[i][j] == 1 {
cf.Means[i] += cf.Ratings[i][j]
scores += 1.0
}
}
cf.Means[i] /= scores
}
}
// Normalize the rating of the users, this method doesn't update the ratings
// in the objects, just returns them
func (cf *CollaborativeFilter) Normalize() (normRatings [][]float64) {
if len(cf.Means) == 0 {
cf.CalcMeans()
}
width := len(cf.Ratings[0])
normRatings = make([][]float64, len(cf.Ratings))
for i := 0; i < len(cf.Ratings); i++ {
normRatings[i] = make([]float64, width)
for j := 0; j < width; j++ {
if cf.AvailableRatings[i][j] == 1 {
normRatings[i][j] = cf.Ratings[i][j] - cf.Means[i]
}
}
}
return
}
// CostFunction Cost function implementation for the collaborative filter
func (cf *CollaborativeFilter) CostFunction(lambda float64, calcGrad bool) (j float64, grad [][][]float64, err error) {
aux := mt.MultElems(mt.Sub(mt.MultTrans(cf.ItemsTheta, cf.Theta), cf.Ratings), cf.AvailableRatings)
j = (mt.SumAll(mt.Apply(aux, powTwo)) / 2) + (lambda / 2 * mt.SumAll(mt.Apply(cf.Theta, powTwo))) + lambda/2*mt.SumAll(mt.Apply(cf.ItemsTheta, powTwo))
if calcGrad {
itemsGrad := mt.Sum(mt.Mult(aux, cf.Theta), mt.MultBy(cf.ItemsTheta, lambda))
thetaGrad := mt.Sum(mt.Mult(mt.Trans(aux), cf.ItemsTheta), mt.MultBy(cf.Theta, lambda))
grad = [][][]float64{
itemsGrad,
thetaGrad,
}
}
return
}
// InitializeThetas Random initialization of the thetas for the given features
func (cf *CollaborativeFilter) InitializeThetas(features int) {
cf.Features = features
rand.Seed(int64(time.Now().Nanosecond()))
cf.ItemsTheta = make([][]float64, len(cf.Ratings))
for j := 0; j < len(cf.Ratings); j++ {
cf.ItemsTheta[j] = make([]float64, features)
for i := 0; i < features; i++ {
if rand.Float64() > 0.5 {
cf.ItemsTheta[j][i] = rand.Float64()
} else {
cf.ItemsTheta[j][i] = 0 - rand.Float64()
}
}
}
cf.Theta = make([][]float64, len(cf.Ratings[0]))
for j := 0; j < len(cf.Ratings[0]); j++ {
cf.Theta[j] = make([]float64, features)
for i := 0; i < features; i++ {
if rand.Float64() > 0.5 {
cf.Theta[j][i] = rand.Float64()
} else {
cf.Theta[j][i] = 0 - rand.Float64()
}
}
}
}
// NewCollFilterFromCsv Loads the information from the CSV space separated files
// for the collaborative filter
func NewCollFilterFromCsv(ratingsSrc string, availableRatings string, itemsTheta string, theta string) (result *CollaborativeFilter, err error) {
result = new(CollaborativeFilter)
// Parse the Ratings params
strInfo, err := ioutil.ReadFile(ratingsSrc)
if err != nil {
panic(err)
}
for _, line := range strings.Split(string(strInfo), "\n") {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.Ratings = append(result.Ratings, values)
}
// Parse the Ratings params
strInfo, err = ioutil.ReadFile(availableRatings)
if err != nil {
panic(err)
}
for _, line := range strings.Split(string(strInfo), "\n") {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.AvailableRatings = append(result.AvailableRatings, values)
}
if itemsTheta != "" {
// Parse the Ratings params
strInfo, err = ioutil.ReadFile(itemsTheta)
if err != nil {
panic(err)
}
for _, line := range strings.Split(string(strInfo), "\n") {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.ItemsTheta = append(result.ItemsTheta, values)
}
}
if theta != "" {
// Parse the Ratings params
strInfo, err = ioutil.ReadFile(theta)
if err != nil {
panic(err)
}
for _, line := range strings.Split(string(strInfo), "\n") {
if line == "" {
break
}
var values []float64
for _, value := range strings.Split(line, " ") {
floatVal, err := strconv.ParseFloat(value, 64)
if err != nil {
panic(err)
}
values = append(values, floatVal)
}
result.Theta = append(result.Theta, values)
}
}
return
}
// getTheta returns the thetas as a multidim array to be used by the fmincg
// method
func (cf *CollaborativeFilter) getTheta() [][][]float64 {
return [][][]float64{
cf.ItemsTheta,
cf.Theta,
}
}
// setTheta sets the both thetas
func (cf *CollaborativeFilter) setTheta(t [][][]float64) {
cf.ItemsTheta = t[0]
cf.Theta = t[1]
}
// rollThetasGrad returns the both thetas as a one dimensin matrix to be used by
// the fmincg method
func (cf *CollaborativeFilter) rollThetasGrad(x [][][]float64) [][]float64 {
values := make([]float64, len(cf.ItemsTheta)*len(cf.ItemsTheta[0])+len(cf.Theta)*len(cf.Theta[0]))
for i := 0; i < len(cf.ItemsTheta); i++ {
for j := 0; j < len(cf.ItemsTheta[0]); j++ {
values[(i*len(cf.ItemsTheta[0]))+j] = x[0][i][j]
}
}
for i := 0; i < len(cf.Theta); i++ {
for j := 0; j < len(cf.Theta[0]); j++ {
values[(len(cf.ItemsTheta)*len(cf.ItemsTheta[0]))+(i*len(cf.Theta[0]))+j] = x[1][i][j]
}
}
return [][]float64{
values,
}
}
// unrollThetasGrad returns the thetas from the one dim matrix to be used in the
// object
func (cf *CollaborativeFilter) unrollThetasGrad(x [][]float64) (result [][][]float64) {
result = make([][][]float64, 2)
result[0] = make([][]float64, len(cf.ItemsTheta))
for i := 0; i < len(cf.ItemsTheta); i++ {
result[0][i] = make([]float64, len(cf.ItemsTheta[0]))
for j := 0; j < len(cf.ItemsTheta[0]); j++ {
result[0][i][j] = x[0][(i*len(cf.ItemsTheta[0]))+j]
}
}
result[1] = make([][]float64, len(cf.Theta))
for i := 0; i < len(cf.Theta); i++ {
result[1][i] = make([]float64, len(cf.Theta[0]))
for j := 0; j < len(cf.Theta[0]); j++ {
result[1][i][j] = x[0][(len(cf.ItemsTheta)*len(cf.ItemsTheta[0]))+(i*len(cf.Theta[0]))+j]
}
}
return
}