-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
142 lines (121 loc) · 5.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import argparse
import time
import tensorflow as tf
import numpy as np
from model import Learner
from data import Data, DataPlus
from experiment import Experiment
class Option(object):
def __init__(self, d):
self.__dict__ = d
def save(self):
with open(os.path.join(self.this_expsdir, "option.txt"), "w") as f:
for key, value in sorted(self.__dict__.items(), key=lambda x: x[0]):
f.write("%s, %s\n" % (key, str(value)))
def main():
parser = argparse.ArgumentParser(description="Experiment setup")
# misc
parser.add_argument('--seed', default=33, type=int)
parser.add_argument('--gpu', default="", type=str)
parser.add_argument('--no_train', default=False, action="store_true")
parser.add_argument('--from_model_ckpt', default=None, type=str)
parser.add_argument('--rule_thr', default=1e-2, type=float)
parser.add_argument('--no_preds', default=False, action="store_true")
parser.add_argument('--get_vocab_embed', default=False, action="store_true")
parser.add_argument('--exps_dir', default=None, type=str)
parser.add_argument('--exp_name', default=None, type=str)
# data property
parser.add_argument('--datadir', default=None, type=str)
parser.add_argument('--resplit', default=False, action="store_true")
parser.add_argument('--no_link_percent', default=0., type=float)
parser.add_argument('--type_check', default=False, action="store_true")
parser.add_argument('--domain_size', default=128, type=int)
parser.add_argument('--no_extra_facts', default=False, action="store_true")
parser.add_argument('--query_is_language', default=False, action="store_true")
parser.add_argument('--vocab_embed_size', default=128, type=int)
# model architecture
parser.add_argument('--num_step', default=3, type=int)
parser.add_argument('--num_layer', default=1, type=int)
parser.add_argument('--rank', default=3, type=int)
parser.add_argument('--rnn_state_size', default=128, type=int)
parser.add_argument('--query_embed_size', default=128, type=int)
# optimization
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--print_per_batch', default=3, type=int)
parser.add_argument('--max_epoch', default=10, type=int)
parser.add_argument('--min_epoch', default=5, type=int)
parser.add_argument('--learning_rate', default=0.001, type=float)
parser.add_argument('--no_norm', default=False, action="store_true")
parser.add_argument('--thr', default=1e-20, type=float)
parser.add_argument('--dropout', default=0., type=float)
# evaluation
parser.add_argument('--get_phead', default=False, action="store_true")
parser.add_argument('--adv_rank', default=False, action="store_true")
parser.add_argument('--rand_break', default=False, action="store_true")
parser.add_argument('--accuracy', default=False, action="store_true")
parser.add_argument('--top_k', default=10, type=int)
d = vars(parser.parse_args())
option = Option(d)
if option.exp_name is None:
option.tag = time.strftime("%y-%m-%d-%H-%M")
else:
option.tag = option.exp_name
if option.resplit:
assert not option.no_extra_facts
if option.accuracy:
assert option.top_k == 1
os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu
tf.logging.set_verbosity(tf.logging.ERROR)
if not option.query_is_language:
data = Data(option.datadir, option.seed, option.type_check, option.domain_size, option.no_extra_facts)
else:
data = DataPlus(option.datadir, option.seed)
print("Data prepared.")
option.num_entity = data.num_entity
option.num_operator = data.num_operator
if not option.query_is_language:
option.num_query = data.num_query
else:
option.num_vocab = data.num_vocab
option.num_word = data.num_word # the number of words in each query
option.this_expsdir = os.path.join(option.exps_dir, option.tag)
if not os.path.exists(option.this_expsdir):
os.makedirs(option.this_expsdir)
option.ckpt_dir = os.path.join(option.this_expsdir, "ckpt")
if not os.path.exists(option.ckpt_dir):
os.makedirs(option.ckpt_dir)
option.model_path = os.path.join(option.ckpt_dir, "model")
option.save()
print("Option saved.")
learner = Learner(option)
print("Learner built.")
saver = tf.train.Saver(max_to_keep=option.max_epoch)
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = False
config.log_device_placement = False
config.allow_soft_placement = True
with tf.Session(config=config) as sess:
tf.set_random_seed(option.seed)
sess.run(tf.global_variables_initializer())
print("Session initialized.")
if option.from_model_ckpt is not None:
saver.restore(sess, option.from_model_ckpt)
print("Checkpoint restored from model %s" % option.from_model_ckpt)
data.reset(option.batch_size)
experiment = Experiment(sess, saver, option, learner, data)
print("Experiment created.")
if not option.no_train:
print("Start training...")
experiment.train()
if not option.no_preds:
print("Start getting test predictions...")
experiment.get_predictions()
if option.get_vocab_embed:
print("Start getting vocabulary embedding...")
experiment.get_vocab_embedding()
experiment.close_log_file()
print("="*36 + "Finish" + "="*36)
if __name__ == "__main__":
main()