-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDESCRIPTION
222 lines (222 loc) · 6.32 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
Package: familiar
Title: End-to-End Automated Machine Learning and Model Evaluation
Version: 1.5.0
Authors@R: c(
person("Alex", "Zwanenburg",
email = "alexander.zwanenburg@nct-dresden.de",
role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-0342-9545")),
person("Steffen", "Löck", role="aut"),
person("Stefan", "Leger", role="ctb"),
person("Iram", "Shahzadi", role="ctb"),
person("Asier", "Rabasco Meneghetti", role="ctb"),
person("Sebastian", "Starke", role="ctb"),
person("Technische Universität Dresden", role="cph"),
person("German Cancer Research Center (DKFZ)", role="cph"))
Description: Single unified interface for end-to-end modelling of regression,
categorical and time-to-event (survival) outcomes. Models created using
familiar are self-containing, and their use does not require additional
information such as baseline survival, feature clustering, or feature
transformation and normalisation parameters. Model performance,
calibration, risk group stratification, (permutation) variable importance,
individual conditional expectation, partial dependence, and more, are
assessed automatically as part of the evaluation process and exported in
tabular format and plotted, and may also be computed manually using export
and plot functions. Where possible, metrics and values obtained during the
evaluation process come with confidence intervals.
URL: https://github.com/alexzwanenburg/familiar
BugReports: https://github.com/alexzwanenburg/familiar/issues
Depends: R (>= 4.0.0)
License: EUPL
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
Roxygen: list(markdown = TRUE)
VignetteBuilder: knitr
Imports:
data.table,
methods,
rlang (>= 0.3.4),
rstream,
survival
Suggests:
BART,
callr (>= 3.4.3),
cluster,
CORElearn,
coro,
dynamicTreeCut,
e1071 (>= 1.7.5),
Ecdat,
fastcluster,
fastglm,
ggplot2 (>= 3.0.0),
glmnet,
gtable,
harmonicmeanp,
isotree (>= 0.3.0),
knitr,
labeling,
laGP,
MASS,
maxstat,
mboost (>= 2.9.0),
microbenchmark,
nnet,
partykit,
power.transform,
praznik,
proxy,
qvalue,
randomForestSRC,
ranger,
rmarkdown,
scales,
testthat (>= 3.0.0),
xml2,
VGAM,
xgboost
Collate:
'FamiliarS4Classes.R'
'FamiliarS4Generics.R'
'BatchNormalisation.R'
'BootstrapConfidenceInterval.R'
'CheckArguments.R'
'CheckHyperparameters.R'
'CheckPackages.R'
'ClassBalance.R'
'ClusteringMethod.R'
'Clustering.R'
'ClusterRepresentation.R'
'Normalisation.R'
'CombatNormalisation.R'
'LearnerS4Naive.R'
'DataObject.R'
'DataParameterChecks.R'
'DataPreProcessing.R'
'DataProcessing.R'
'DataServerBackend.R'
'ErrorMessages.R'
'Evaluation.R'
'ExperimentData.R'
'ExperimentSetup.R'
'Familiar.R'
'FamiliarCollection.R'
'FamiliarCollectionExport.R'
'FamiliarData.R'
'FamiliarDataComputation.R'
'FamiliarDataComputationAUCCurves.R'
'FamiliarDataComputationCalibrationData.R'
'FamiliarDataComputationCalibrationInfo.R'
'FamiliarDataComputationConfusionMatrix.R'
'FamiliarDataComputationDecisionCurveAnalysis.R'
'FamiliarDataComputationFeatureExpression.R'
'FamiliarDataComputationFeatureSimilarity.R'
'FamiliarDataComputationHyperparameters.R'
'FamiliarDataComputationICE.R'
'FamiliarDataComputationModelPerformance.R'
'FamiliarDataComputationPermutationVimp.R'
'FamiliarDataComputationPredictionData.R'
'FamiliarDataComputationRiskStratificationData.R'
'FamiliarDataComputationRiskStratificationInfo.R'
'FamiliarDataComputationSampleSimilarity.R'
'FamiliarDataComputationUnivariateAnalysis.R'
'FamiliarDataComputationVimp.R'
'FamiliarDataElement.R'
'FamiliarEnsemble.R'
'FamiliarHyperparameterLearner.R'
'FamiliarModel.R'
'FamiliarNoveltyDetector.R'
'FamiliarObjectConversion.R'
'Transformation.R'
'FamiliarObjectUpdate.R'
'FamiliarSharedS4Methods.R'
'FamiliarVimpMethod.R'
'FeatureInfo.R'
'FeatureInfoParameters.R'
'FeatureSelection.R'
'FunctionWrapperUtilities.R'
'HyperparameterOptimisation.R'
'HyperparameterOptimisationMetaLearners.R'
'HyperparameterOptimisationUtilities.R'
'HyperparameterS4BayesianAdditiveRegressionTrees.R'
'HyperparameterS4GaussianProcess.R'
'HyperparameterS4RandomSearch.R'
'HyperparameterS4Ranger.R'
'Imputation.R'
'Iterations.R'
'LearnerMain.R'
'LearnerRecalibration.R'
'LearnerS4Cox.R'
'LearnerS4GLM.R'
'LearnerS4GLMnet.R'
'LearnerS4KNN.R'
'LearnerS4MBoost.R'
'LearnerS4NaiveBayes.R'
'LearnerS4RFSRC.R'
'LearnerS4Ranger.R'
'LearnerS4SVM.R'
'LearnerS4SurvivalRegression.R'
'LearnerS4XGBoost.R'
'LearnerSurvivalGrouping.R'
'LearnerSurvivalProbability.R'
'Logger.R'
'MetricS4.R'
'MetricS4AUC.R'
'MetricS4Brier.R'
'MetricS4ConcordanceIndex.R'
'MetricS4ConfusionMatrixMetrics.R'
'MetricS4Regression.R'
'ModelBuilding.R'
'NoveltyDetectorS4IsolationTree.R'
'NoveltyDetectorMain.R'
'NoveltyDetectorS4NoneNoveltyDetector.R'
'OutcomeInfo.R'
'PairwiseSimilarity.R'
'ParallelFunctions.R'
'ParseData.R'
'ParseSettings.R'
'PlotAUCcurves.R'
'PlotAll.R'
'PlotCalibration.R'
'PlotColours.R'
'PlotConfusionMatrix.R'
'PlotDecisionCurves.R'
'PlotFeatureRanking.R'
'PlotFeatureSimilarity.R'
'PlotGTable.R'
'PlotICE.R'
'PlotInputArguments.R'
'PlotKaplanMeier.R'
'PlotModelPerformance.R'
'PlotPermutationVariableImportance.R'
'PlotSampleClustering.R'
'PlotUnivariateImportance.R'
'PlotUtilities.R'
'PredictS4Methods.R'
'ProcessTimeUtilities.R'
'Random.R'
'RandomGrouping.R'
'RankBordaAggregation.R'
'RankMain.R'
'RankSimpleAggregation.R'
'RankStabilityAggregation.R'
'SocketServer.R'
'StringUtilities.R'
'TestDataCreators.R'
'TestFunctions.R'
'TrainS4Methods.R'
'TrimUtilities.R'
'Utilities.R'
'UtilitiesS4.R'
'VimpMain.R'
'VimpS4Concordance.R'
'VimpS4CoreLearn.R'
'VimpS4Correlation.R'
'VimpS4MutualInformation.R'
'VimpS4OtherMethods.R'
'VimpS4Regression.R'
'VimpTable.R'
'aaa.R'
Config/testthat/parallel: true
Config/testthat/edition: 3