-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
601 lines (513 loc) · 25.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
'''
--- I M P O R T S T A T E M E N T S ---
'''
import os
os.environ['NUMEXPR_MAX_THREADS'] = '16'
import sys
import json
import socket
import datetime
import coloredlogs, logging
coloredlogs.install()
import argparse
import yaml
import dataset
from network.symbol_builder import Combined
from network.config import get_config
from data import iterator_factory
from run import metric
from run.model import model
from run.lr_scheduler import MultiFactorScheduler
from decimal import Decimal
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from torch.optim import SGD, Adam, AdamW
datasets = [ 'NTU-RGB',
'UCF-101',
'HMDB-51',
'smthng-smthng_coarse',
'smthng-smthng_fine',
'smthng-smthng_sub21',
'smthng-smthng_v2']
# Create main parser
parser = argparse.ArgumentParser(description="PyTorch parser for early action prediction from videos")
# debug parser arguments
parser.add_argument('--random_seed', type=int, default=1,
help='set seeding (default: 1).')
parser.add_argument('--print_net', type=bool, default=False,
help="print the architecture.")
# visible video precentage
parser.add_argument('--video_per', type=float, default=None,
help='precentage of the video to be used for prediction. Will overwrite if precentages for train/val videos are set individually.')
parser.add_argument('--video_per_train', type=float, default=.4,
help='precentage of the video to be used during training.')
parser.add_argument('--video_per_val', type=float, default=.4,
help='precentage of the video to be used for prediction during validation.')
parser.add_argument('--num_samplers', type=int, default=3,
help='number of video samplers. The window from which frames are sampled from will progressively increase based on `num_frames`*`s`/`num_samplers` for `s` in range(`num_samplers`).')
# data loading parser arguments
parser.add_argument('--dataset', default='UCF-101', choices=datasets,
help="name of the dataset")
parser.add_argument('--data_dir', default='data/',
help="path for the video files \n ---- Note that the allowed formats are: ---- \n -> video (.mp4, .mpeg, .avi) \n -> image (.jpg, .jpeg, .png) \n -> SQL with frames encoded as BLOBs (.sql) \n See advice in the README about the directory structure.")
parser.add_argument('--label_dir', default='labels/',
help="path for the label files associated with the dataset.")
# training and validation params parser arguments
parser.add_argument('--precision', default='fp32', choices=['fp32','mixed'],
help="switch between single (fp32)/mixed (fp16) precision.")
parser.add_argument('--frame_len', default=16,
help="define the (max) frame length of each input sample.")
parser.add_argument('--frame_size', default=(100,176),
help="define the (max) frame size of each input sample.")
parser.add_argument('--train_frame_interval', default=[1,2,3,4], nargs='+',
help="define the sampling interval between frames.")
parser.add_argument('--val_frame_interval', default=[1,2], nargs='+',
help="define the sampling interval between frames.")
parser.add_argument('--batch_size', type=int, default=16,
help="batch size")
parser.add_argument('--long_cycles', type=bool, default=False,
help="enable long cycles for batches (Multigrid training).")
parser.add_argument('--short_cycles', type=bool, default=False,
help="enable short cycles for batches (Multigrid training).")
parser.add_argument('--end_epoch', type=int, default=60,
help="maxmium number of training epoch.")
parser.add_argument('--optimiser', type=str, default='AdamW', choices=['AdamW', 'SGD', 'Adam'],
help='name of the optimiser to be used.')
parser.add_argument('--lr_base', type=float, default=1e-2,
help="base learning rate.")
# Should be set in YAML config file (not possible through argparse)
parser.add_argument('--lr_mult', type=dict, default={'head':.1,'pool':.1,'classifier':1.0},
help="learning rate multipliers for different sets of parameters. Acceptable keys include:\n - `head`: for the lr multiplier of the head (temporal) network. Default value is 1.0. \n - `gates`: for the lr multiplier of the per-frame exiting gates. Default value is 0.0. \n - `pool`: For the pooling method. this is only used in the pooling method is parameterised.Default value is 1e-4. \n - `classifier`: for the `fc` clasifier of the network. Default value is 0.0. \n ")
parser.add_argument('--lr_steps', default=[14, 32, 44], nargs='+',
help="epochs in which the (base) learning rate will change.")
parser.add_argument('--lr_factor', type=float, default=0.1,
help="reduce the learning based on factor.")
parser.add_argument('--weight_decay', type=float, default=1e-5,
help="weight decay.")
# storing parser arguments
parser.add_argument('--results_dir', type=str, default="./results",
help="folder for logging accuracy and saving models.")
parser.add_argument('--save_frequency', type=float, default=1,
help="save once after N epochs.")
parser.add_argument('--log_file', type=str, default=None,
help="set logging file.")
# GPU-device related parser arguments
parser.add_argument('--gpus', default=[0,1], nargs='+',
help="define gpu id(s).")
# DL model parser arguments
parser.add_argument('--pretrained_dir', type=str, default=None,
help="load pretrained model from path. This can be used for either the backbone or head alone or both. Leave empty when training from scratch.")
parser.add_argument('--backbone', type=str, default='r3d_18',
help="chose the backbone architecture. See `network` dir for more info.")
parser.add_argument('--head', type=str, default='Tempr_h',
help="chose the head architecture. See `network` dir for more info.")
parser.add_argument('--num_freq_bands', type=int, default = 10,
help="choose the number of freq bands, with original value (2 * K + 1)")
parser.add_argument('--max_freq', type=float, default = 10.,
help="choose the maximum frequency number.")
parser.add_argument('--num_latents', type=int, default = 256,
help="choose number of latents/induced set points/centroids (following terminology from the Perceiver/Set Transformer papers).")
parser.add_argument('--latent_dim', type=int, default = 512,
help="latent dimension size.")
parser.add_argument('--cross_heads', type=int, default = 1,
help = "number of cross-head attention layers.")
parser.add_argument('--latent_heads', type=int, default = 8,
help= "number of latent head attention moduls.")
parser.add_argument('--cross_dim_head', type=int, default = 64,
help="number of dimensions per cross attention head.")
parser.add_argument('--latent_dim_head', type=int, default = 64,
help="number of dimensions per latent self attention head.")
parser.add_argument('--attn_dropout', type=float, default = 0.,
help='dropout probability for the cross head and latent attention.')
parser.add_argument('--ff_dropout', type=float, default = 0.,
help='dropout probability for the feed-forward sub-net.')
parser.add_argument('--weight_tie_layers', type=bool, default = False,
help="whether to weight tie layers (optional).")
parser.add_argument('--accum_grads', default=1, type=int,
help='define the number of workers.')
parser.add_argument('--use_frames', default=False, type=lambda x: (str(x).lower() == 'true'),
help='flag for using folders with jpg images.')
parser.add_argument('--pool', type=str, default='ada', choices=['max','avg','em','edscw','idw','ada'],
help='choice of pooling method to use for selection/fusion of frame features.')
parser.add_argument('--workers', type=int, default=8,
help='define the number of workers.')
# optimization parser arguments
parser.add_argument('--resume_epoch', type=int, default=0,
help="resuming train from defined epoch.")
# YAML loader
parser.add_argument('--config', type=str, default=None,
help="YAML configuration file to load parser arguments from.")
'''
--- S T A R T O F F U N C T I O N A U T O F I L L ---
[About]
Function for creating log directories based on the parser arguments
[Args]
- args: ArgumentParser object containg both the name of task (if empty a default folder is created) and the log file to be created.
[Returns]
- args: ArgumentParser object with additionally including the model directory and the model prefix.
'''
def autofill(args, parser):
# fix for lr mult empty keys
defaults = vars(parser.parse_args([]))
for key in defaults['lr_mult']:
if key not in args.lr_mult.keys():
args.lr_mult[key] = defaults['lr_mult'][key]
# customized
if args.log_file is None:
if not os.path.exists("logs"):
os.makedirs("logs")
now = datetime.datetime.now()
date = str(now.year) + '-' + str(now.month) + '-' + str(now.day)
final_str = 'observation_ratio_'+str(args.video_per)+'_'+args.head+'_'+args.backbone+'_'+args.pool
args.log_file = "logs/{}_at-{}_datetime_{}_with_{}.log".format('video_pred', socket.gethostname(), date, final_str)
ratio = 'observation_ratio_'+str(args.video_per)
if args.head:
args.model_dir = os.path.join(args.results_dir,ratio,args.head+'_'+args.backbone+'_'+args.pool)
else:
args.model_dir = os.path.join(args.results_dir,ratio,args.backbone)
return args
'''
--- E N D O F F U N C T I O N A U T O F I L L ---
'''
'''
--- S T A R T O F M A I N F U N C T I O N ---
'''
if __name__ == "__main__":
# set args & overwrite if YAML file is used
args = parser.parse_args()
if args.config is not None:
# load YAML file options
print(args.config)
opt = yaml.load(open(args.config), Loader=yaml.FullLoader)
# overwrite arguments based on YAML options
vars(args).update(opt)
args = autofill(args, parser)
# Use file logger + console output (for servers and real-time feedback)
logger = logging.getLogger('')
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(args.log_file)
formatter = logging.Formatter('%(asctime)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
fh.setFormatter(formatter)
logger.addHandler(fh)
# handle strings in argparse lists
args.gpus = [int(i) for i in args.gpus]
args.lr_steps = [int(i) for i in args.lr_steps]
args.train_frame_interval = [int(i) for i in args.train_frame_interval]
args.val_frame_interval = [int(i) for i in args.val_frame_interval]
# must set visible devices BEFORE importing torch
if (len(args.gpus) == 1):
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpus[0])
else:
os.environ["CUDA_VISIBLE_DEVICES"] = ''.join(str(id)+',' for id in args.gpus)[:-1]
logging.info('CUDA_VISIBLE_DEVICES set to '+os.environ["CUDA_VISIBLE_DEVICES"])
logging.info("Using pytorch version {} ({})".format(torch.__version__, torch.__path__))
logging.info("Start training with args:\n" + json.dumps(vars(args), indent=4, sort_keys=True))
# Set device states
logging.info('CUDA availability: '+str(torch.cuda.is_available()))
assert torch.cuda.is_available(), "CUDA is not available. CUDA devices are required from this repo!"
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
if args.head.lower() == 'none':
args.head = None
clip_length = int(args.frame_len)
clip_size = args.frame_size
if str(clip_size).isdigit():
clip_size = (int(clip_size),int(clip_size))
else:
clip_size = (int(clip_size[0]),int(clip_size[1]))
# Assign values from kwargs
model_prefix = args.model_dir
# Load dataset related configuration
dataset_cfg = dataset.get_config(name=args.dataset)
# Load model related configuration
if args.head:
input_conf = get_config(name=args.head+' w/ '+args.backbone)
else:
input_conf = get_config(name=args.backbone)
# training parameters intialisation
kwargs = {}
kwargs.update(dataset_cfg)
kwargs.update(vars(args))
kwargs['input_conf'] = input_conf
# `Combined` object for grouping backbone and head models.
net = Combined(**kwargs)
# Create model
net = model(net=net,
criterion=torch.nn.CrossEntropyLoss().cuda(),
model_prefix=model_prefix,
step_callback_freq=1,
save_checkpoint_freq=args.save_frequency)
net.net.cuda()
# Make results directory for .csv files if it does not exist
ratio = 'observation_ratio_'+str(args.video_per)
samplers = 'samplers_'+str(args.num_samplers)
latents = 'latents_'+str(args.num_latents)+'_heads_'+str(args.latent_heads)
if args.head:
results_path = os.path.join(args.results_dir,args.dataset,latents,samplers,ratio,args.head+'_'+args.backbone+'_'+args.pool)
else:
results_path = os.path.join(args.results_dir,args.dataset,latents,samplers,ratio,args.backbone+'_'+args.pool)
if not os.path.exists(results_path):
os.makedirs(results_path)
# data iterator - randomisation based on date and time values
iter_seed = torch.initial_seed() + 100 + max(0, args.resume_epoch) * 100
now = datetime.datetime.now()
iter_seed += now.year + now.month + now.day + now.hour + now.minute + now.second
# Get parent location
# - `data` folder should include all the dataset examples.
# - `labels` folder should inclde all labels in .csv format.
# We use a global label formating - you can have a look at the link in the `README.md` to download the files.
train_loaders = {}
print()
# overwrite precentages if `video_per` is defined
if args.video_per is not None:
train_per = args.video_per
val_per = args.video_per
else:
train_per = args.video_per_train
val_per = args.video_per_val
# Create custom loaders for train and validation
train_data, eval_data, train_length = iterator_factory.create(
data_dir=args.data_dir ,
labels_dir=args.label_dir ,
video_per_train=train_per,
video_per_val=val_per,
num_samplers=args.num_samplers,
batch_size=args.batch_size,
return_len=True,
clip_length=clip_length,
clip_size=clip_size,
val_clip_length=clip_length,
val_clip_size=clip_size,
include_timeslices = dataset_cfg['include_timeslices'],
train_interval=args.train_frame_interval,
val_interval=args.val_frame_interval,
mean=input_conf['mean'],
std=input_conf['std'],
seed=iter_seed,
num_workers=args.workers,
use_frames=args.use_frames)
print()
# Parameter LR configuration for optimiser
# Base layers are based on the layers as loaded to the model
params = {
'classifier':{'lr':args.lr_mult['classifier'],
'params':[]},
'head':{'lr':args.lr_mult['head'],
'params':[]},
'pool':{'lr':args.lr_mult['pool'],
'params':[]},
'base':{'lr':args.lr_base,
'params':[]}
}
# Iterate over all parameters
for name, param in net.net.named_parameters():
if 'fc' in name.lower():
params['classifier']['params'].append(param)
elif 'head' in name.lower():
params['head']['params'].append(param)
elif args.head is None and 'backbone' in name.lower():
params['head']['params'].append(param)
elif 'pred_fusion' in name.lower():
params['pool']['params'].append(param)
params['base']['params'].append(param)
# User feedback
for key in params.keys():
if key == 'base':
logging.info("Optimiser:: - \033[35m{}\033[0m lr is set to \033[35m{:.1e}\033[0m for \033[35m{}\033[0m params".format(key, params[key]['lr'], len(params[key]['params'])))
else:
lr_n = params['base']['lr']*params[key]['lr']
logging.info("Optimiser:: - \033[35m{}\033[0m lr is set to \033[35m{:.1e}\033[0m for \033[35m{}\033[0m params".format(key, Decimal(lr_n),len(params[key]['params'])))
if args.optimiser=='SGD':
optimiser = torch.optim.SGD([
{'params': params['classifier']['params'], 'lr_mult': params['classifier']['lr']},
{'params': params['head']['params'], 'lr_mult': params['head']['lr']},
{'params': params['pool']['params'], 'lr_mult': params['pool']['lr']},],
lr=args.lr_base,
momentum=0.9,
weight_decay=args.weight_decay,
nesterov=True)
elif args.optimiser=='Adam':
optimiser = torch.optim.Adam([
{'params': params['classifier']['params'], 'lr_mult': params['classifier']['lr']},
{'params': params['head']['params'], 'lr_mult': params['head']['lr']},
{'params': params['pool']['params'], 'lr_mult': params['pool']['lr']},],
lr=args.lr_base,
weight_decay=args.weight_decay)
elif args.optimiser=='AdamW':
optimiser = torch.optim.AdamW([
{'params': params['classifier']['params'], 'lr_mult': params['classifier']['lr']},
{'params': params['head']['params'], 'lr_mult': params['head']['lr']},
{'params': params['pool']['params'], 'lr_mult': params['pool']['lr']},],
lr=args.lr_base,
weight_decay=args.weight_decay)
else:
logging.error('Optimiser:: Initialisation of optimiser failed! No implementation available for optimiser named {}'.format(args.optimiser))
raise NotImplemented
# mixed or single precision based on argument parser
if args.precision=='mixed':
scaler = torch.cuda.amp.GradScaler()
else:
scaler=None
# Create DataParallel wrapper
net.net = torch.nn.DataParallel(net.net, device_ids=[gpu_id for gpu_id in range(torch.cuda.device_count())])
num_steps = train_length // args.batch_size
print()
logging.info("IterScheduler:: Each epoch will have {:d} iterations based on batch size {:d}".format(num_steps,args.batch_size))
# Long Cycle steps
if (args.long_cycles):
count = 0
index = 0
iter_sizes = [8, 4, 2, 1]
initial_num = num_steps
# Expected to find the number of batches that fit exactly to the number of iterations.
# So the sum of the floowing batch sizes should be less or equal to the number of batches left.
while sum(iter_sizes[index:]) <= num_steps:
# Case 1: 8 x B
if iter_sizes[index] == 8:
count += 1
index = 1
num_steps -= 8
# Case 2: 4 x B
elif iter_sizes[index] == 4:
count += 1
index = 2
num_steps -= 4
# Case 3: 2 x B
elif iter_sizes[index] == 2:
count += 1
index = 3
num_steps -= 2
# Base case
elif iter_sizes[index] == 1:
count += 1
index = 0
num_steps -= 1
logging.info("MultiGridBatchScheduler:: New number of batches per epoch is {:d} being equivalent to {:1.3f} of original number of batches with Long cycles".format(count,float(count)/float(initial_num)))
num_steps = count
# Short Cycle steps
if (args.short_cycles):
# Iterate for *every* batch
i = 0
while i <= num_steps:
m = i%3
# Case 1: Base case
if (m==0):
num_steps -= 1
# Case 2: b = 2 x B
if (m==1):
num_steps -= 2
# Case 3: b = 4 x B
else:
num_steps -= 4
i += 1
# Update new number of batches
logging.info("MultiGridBatchScheduler:: New number of batches per epoch is {:d} being equivalent to {:1.3f} of original number of batches with Short cycles".format(i,float(i)/float(initial_num)))
num_steps = i
# Split the batch number to four for every change in the long cycles
long_steps = None
if (args.long_cycles):
step = num_steps//4
long_steps = list(range(num_steps))[0::step]
num_steps = long_steps[-1]
# Create full list of long steps (for all batches)
for epoch in range(1,args.end_epoch):
end = long_steps[-1]
long_steps = long_steps + [x.__add__(end) for x in long_steps[-4:]]
# Fool-proofing
if (long_steps[0]==0):
long_steps[0]=1
# Options acceptable on training:
# - `resume_epoch` == 0 and `pretrained_dir` is None : Training from scratch.
# - `resume_epoch` == 0 and `pretrained_dir` is not None: Fine-tuning (load only checkpoint).
# - `resume_epoch` != 0 and `pretrained_dir` is not None: Resume training (load entire "state_dict").
# - `resume_epoch` != 0 and `pretrained_dir` is None: N/A catch with assert
assert not(args.resume_epoch != 0 and args.pretrained_dir is None), 'Initialiser:: Error in training configuration occured! Cannot use argument `resume_epoch` with non-zero integer without specifying the `pretrained_dir` string directory to load weights from!'
# resume training: model and optimiser - (account of various batch sizes)
if args.resume_epoch == 0:
if args.pretrained_dir is None:
# Train from scratch
epoch_start = 0
step_counter = 0
else:
# Fine tuning
_, optimiser = net.load_checkpoint(path=args.pretrained_dir, optimiser=optimiser)
epoch_start = 0
step_counter = 0
else:
# Resume training
epoch, _ = net.load_checkpoint(path=args.pretrained_dir, epoch=args.resume_epoch)
epoch_start = args.resume_epoch # change if you are to use "state_dict"'s epoch
step_counter = epoch_start * num_steps
# Try to load previous state dict in case `pretrained_dir` is None
if not args.pretrained_dir:
try:
net.load_checkpoint(epoch=args.resume_epoch, optimizer=optimiser)
except Exception:
logging.warning('Initialiser:: No previous checkpoint found! You can specify the file path explicitly with `pretrained_dir` argument.')
epoch_start = args.resume_epoch
step_counter = epoch_start * num_steps
# Step dictionary creation
iteration_steps = {'long_0':[],'long_1':[],'long_2':[],'long_3':[],'short_0':[],'short_1':[],'short_2':[]}
#Populate dictionary
for batch_i in range(0,num_steps):
if (args.long_cycles):
# Long cycle cases
if batch_i>=0 and batch_i<num_steps//4:
iteration_steps['long_0'].append(batch_i)
elif batch_i>=num_steps//4 and batch_i<num_steps//2:
iteration_steps['long_1'].append(batch_i)
elif batch_i>=num_steps//2 and batch_i<(3*num_steps)//4:
iteration_steps['long_2'].append(batch_i)
else:
iteration_steps['long_3'].append(batch_i)
if (args.short_cycles):
# Short cases
if (batch_i%3==0):
iteration_steps['short_0'].append(batch_i)
elif (batch_i%3==1):
iteration_steps['short_1'].append(batch_i)
else:
iteration_steps['short_2'].append(batch_i)
# set learning rate scheduler
lr_scheduler = MultiFactorScheduler(base_lr=args.lr_base,
steps=[x*num_steps for x in args.lr_steps],
iterations_per_epoch=num_steps,
iteration_steps=iteration_steps,
factor=args.lr_factor,
step_counter=step_counter)
# define evaluation metric
metrics = metric.MetricList(metric.Loss(name="loss-ce"),
metric.Accuracy(name="top1", topk=1),
metric.Accuracy(name="top5", topk=5),
metric.BatchSize(name="batch_size"),
metric.LearningRate(name="lr"))
sampler_metrics = metric.MetricList(metric.Loss(name="loss-ce"),
metric.Accuracy(name="top1", topk=1),
metric.Accuracy(name="top5", topk=5))
# enable cudnn tune
#cudnn.benchmark = True
logging.info('LRScheduler: The learning rate will change at steps: '+str([x*num_steps for x in args.lr_steps]))
# Main training happens here
net.fit(train_iter=train_data,
eval_iter=eval_data,
batch_shape=(int(args.batch_size),int(clip_length),int(clip_size[0]),int(clip_size[1])),
workers=args.workers,
no_cycles=(not(args.long_cycles) and not(args.short_cycles)),
optimiser=optimiser,
long_short_steps_dir=iteration_steps,
lr_scheduler=lr_scheduler,
metrics=metrics,
sampler_metrics_list=[sampler_metrics for _ in range(args.num_samplers)],
iter_per_epoch=num_steps,
epoch_start=epoch_start,
epoch_end=args.end_epoch,
directory=results_path,
precision=args.precision,
scaler=scaler,
samplers=args.num_samplers,
accum_grads=args.accum_grads)
'''
--- E N D O F M A I N F U N C T I O N ---
'''