-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample2.log
46 lines (44 loc) · 2.56 KB
/
example2.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
eps=1e-15
k = 6.28319
k_x= 1.6295
d = 0.5
--- first derivative of quasi-periodic Green's function ---
(x,y,z) = ( -2.1, 0.3,-0.35), (x,rho,phi) = ( -2.1, 0.460977,-0.86217)
qG = 1.82601452019215e-01 +1.50883384846742e-01 I,err=13
dqG/dx = 2.07950092899608e-01 -3.19022301690984e-01 I
1/rho*dqG/drho=-2.37115568304341e+00 +2.07690111604746e+00 I
dqG/dphi = 0.00000000000000e+00 +0.00000000000000e+00 I
dqG/dy =-7.11346704913023e-01 +6.23070334814239e-01 I (verification)
dqG/dz = 8.29904489065193e-01 -7.26915390616612e-01 I (verification)
(x,y,z) = ( 0.1, 0.04, 0.01), (x,rho,phi) = ( 0.1, 0.0412311, 0.244979)
qG = 4.88485657985412e-01 +5.15873981750357e-01 I,err=14
dqG/dx =-6.20073165263924e+00 +7.06489798789161e-02 I
1/rho*dqG/drho=-7.70228047428241e+01 -8.04478499489265e+00 I
dqG/dphi = 0.00000000000000e+00 +0.00000000000000e+00 I
dqG/dy =-3.08091218971296e+00 -3.21791399795706e-01 I (verification)
dqG/dz =-7.70228047428240e-01 -8.04478499489265e-02 I (verification)
--- second derivative of quasi-periodic Green's function ---
(x,y,z) = ( -2.1, 0.3,-0.35), (x,rho,phi) = ( -2.1, 0.460977,-0.86217)
qG = 1.82601452019215e-01 +1.50883384846742e-01 I,err=15
dqG/dx = 2.07950092899608e-01 -3.19022301690984e-01 I
1/rho*dqG/drho=-2.37115568304341e+00 +2.07690111604746e+00 I
dqG/dphi = 0.00000000000000e+00 +0.00000000000000e+00 I
d^2qG/dx^2 =-2.81459822935708e-01 -6.10035672324448e-01 I
d^2qG/dphidx = 1.96140069099361e+00 +1.99426838762599e+00 I
d^2qG/dphi^2 =-4.55620087199749e+00 -7.42350272026169e+00 I
verification of second derivative using central difference
d^2qG/dx^2 =-2.81459824058583e-01 -6.10035673087594e-01 I
d^2qG/dphidx = 1.96140069519402e+00 +1.99426839708750e+00 I
d^2qG/dphi^2 =-4.55620087214115e+00 -7.42350272142644e+00 I
(x,y,z) = ( 0.1, 0.04, 0.01), (x,rho,phi) = ( 0.1, 0.0412311, 0.244979)
qG = 4.88485657985412e-01 +5.15873981750357e-01 I,err=14
dqG/dx =-6.20073165263924e+00 +7.06489798789161e-02 I
1/rho*dqG/drho=-7.70228047428241e+01 -8.04478499489265e+00 I
dqG/dphi = 0.00000000000000e+00 +0.00000000000000e+00 I
d^2qG/dx^2 = 1.04928238483831e+02 -4.35877089324275e+00 I
d^2qG/dphidx = 7.09731488113678e+01 +6.25242747441965e-01 I
d^2qG/dphi^2 =-4.71900745406942e+01 -7.96233259462785e+00 I
verification of second derivative using central difference
d^2qG/dx^2 = 1.04928238551238e+02 -4.35877089338677e+00 I
d^2qG/dphidx = 7.09731488335308e+01 +6.25242748686361e-01 I
d^2qG/dphi^2 =-4.71900745280251e+01 -7.96233259381385e+00 I