-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgmm.c
129 lines (116 loc) · 2.72 KB
/
gmm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <math.h>
#include <stdlib.h>
#include "gmm.h"
static double data_min(int n, double *x)
{
double m = x[0];
int i;
for (i = 1; i < n; i++)
if (m > x[i])
m = x[i];
return m;
}
static double data_max(int n, double *x)
{
double m = x[0];
int i;
for (i = 1; i < n; i++)
if (m < x[i])
m = x[i];
return m;
}
static void Gaussian_recalc(Gaussian *g)
{
g->coef = 1.0/sqrt(g->var*6.2831853);
}
void Gaussian_init(Gaussian *g, double mean, double var)
{
g->mean = mean;
g->var = var;
Gaussian_recalc(g);
}
double Gaussian_prob(double x, Gaussian *g)
{
double y = x - g->mean;
return(g->coef*exp(-y*y/g->var));
}
void GMM_init_minmax(GMM *gmm, int nmix, double min, double max)
{
int i;
gmm->nmix = nmix;
gmm->g = (Gaussian*)malloc(sizeof(Gaussian)*nmix);
gmm->weight = (double*)malloc(sizeof(double)*nmix);
for (i = 0; i < nmix; i++) {
Gaussian_init(&gmm->g[i], min+(max-min)*i/nmix, 1.0);
gmm->weight[i] = 1.0/nmix;
}
}
void GMM_init(GMM *gmm, int nmix, int n, double *data)
{
GMM_init_minmax(gmm,nmix,data_min(n,data),data_max(n,data));
}
void GMM_free(GMM *gmm)
{
free(gmm->g);
free(gmm->weight);
}
double GMM_prob(double x, GMM *gmm)
{
double p = 0.0;
int i;
for (i = 0; i < gmm->nmix; i++) {
p += gmm->weight[i]*Gaussian_prob(x,&gmm->g[i]);
}
return p;
}
double GMM_reest(int n, double *x, GMM *gmm)
{
double *gamma;
double *newmean;
double *newvar;
double *totalgamma;
double total_logprob = 0.0;
int i,j;
gamma = (double*)malloc(sizeof(double)*gmm->nmix);
totalgamma = (double*)malloc(sizeof(double)*gmm->nmix);
newmean = (double*)malloc(sizeof(double)*gmm->nmix);
newvar = (double*)malloc(sizeof(double)*gmm->nmix);
for (i = 0; i < gmm->nmix; i++) {
newmean[i] = newvar[i] = totalgamma[i] = 0.0;
}
for (i = 0; i < n; i++) {
double tgamma = 0.0;
for (j = 0; j < gmm->nmix; j++) {
gamma[j] = gmm->weight[j]*Gaussian_prob(x[i],&gmm->g[j]);
tgamma += gamma[j];
}
total_logprob += log(tgamma);
for (j = 0; j < gmm->nmix; j++)
gamma[j] /= tgamma;
for (j = 0; j < gmm->nmix; j++) {
double y;
newmean[j] += gamma[j]*x[i];
y = x[i]-gmm->g[j].mean;
newvar[j] += gamma[j]*y*y;
totalgamma[j] += gamma[j];
}
}
for (j = 0; j < gmm->nmix; j++) {
Gaussian_init(&gmm->g[j],newmean[j]/totalgamma[j],newvar[j]/totalgamma[j]);
gmm->weight[j] = totalgamma[j]/n;
}
free(gamma);
free(newmean);
free(newvar);
free(totalgamma);
return total_logprob;
}
double GMM_train(int n, double *x, GMM *gmm, int iter_max)
{
double l;
int i;
for (i = 0; i < iter_max; i++) {
l = GMM_reest(n,x,gmm);
}
return l;
}