-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.py
197 lines (140 loc) · 6.67 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import random
from baselines.mean_static_face import mean_static_face
from baselines.nearest_neighbor import nearest_neighbor
from baselines.random_sequence_dataset import random_sequence
from diffusion.module.utils.biovid import BioVidDataset
# from preprocess.extract_pspi import get_pspi_from_video
# from einops import rearrange
import torch
# from tqdm import tqdm
from metrics.metrics import calculate_pain_metrics
from metrics.metrics import Metrics
def get_val():
path_to_frame_labels = "/media/tien/SSD-NOT-OS/pain_intermediate_data/processed_pain_data_no_facedetector/"
path_to_video_frame = (
"/media/tien/SSD-DATA/data/BioVid HeatPain DB/PartC/extracted_frame/"
)
path_to_3d_latents = (
"/media/tien/SSD-NOT-OS/pain_intermediate_data/emoca_latent_code/"
)
temp_dir = "/media/tien/SSD-NOT-OS/pain_intermediate_data/temp_video_eval"
val_dataset = BioVidDataset(
path_to_video_frame=path_to_video_frame,
path_to_frame_labels=path_to_frame_labels,
path_to_3d_latents=path_to_3d_latents,
split="val",
max_length=608,
is_video=True,
)
val_dataset.temp_dir = temp_dir
os.makedirs(temp_dir, exist_ok=True)
# for sample in val_dataset:
# yield sample
return val_dataset
if __name__ == "__main__":
from tqdm import tqdm
# set seed for everything
output_path = "/media/tien/SSD-NOT-OS/pain_intermediate_data/output_baseline/"
gt_pspi_path = "/media/tien/SSD-NOT-OS/pain_intermediate_data/groundtruth/pspi/"
val_list = torch.load("val_list_bug.pt")
correct_val_list_ = torch.load("val_list.pt")
correct_val_list = [(video_name, start_frame.cpu().item(), end_frame.cpu().item()) for video_name, start_frame, end_frame in correct_val_list_]
correct_val_list = set(correct_val_list)
new_val_list = []
for idx, sample in enumerate(tqdm(val_list)):
video_name, start_frame, end_frame = sample
if (video_name, start_frame.cpu().item(), end_frame.cpu().item()) not in correct_val_list:
# print("skip", video_name, start_frame, end_frame)
continue
new_val_list.append((idx, sample))
print("new_val_list", len(new_val_list))
val_set = get_val()
print("predicting exp")
# mean_baseline = {}
nn_baseline = {
'exp': [],
'pspi': [],
}
random_baseline = {
'exp': [],
'pspi': [],
}
gt = {
'exp': [],
'pspi': [],
}
stimuli = []
final_idx = 0
for try_idx in range(1):
for idx, sample in tqdm(new_val_list):
video_name, start_frame, end_frame = sample
end_frame = start_frame + 608
# # save prediction for each baseline
# mean_static_face
# exp_mean_prediction = mean_static_face(sample['x'].shape[0])
# pspi_mean_prediction = ... # TODO
sample = val_set.__getitem__(idx, video_name=video_name, start_frame_id=start_frame, end_frame_id=end_frame)
# nearest_neighbor
nn_prediction = nearest_neighbor(sample)
exp_nn_prediction = nn_prediction['x']
exp_nn_prediction[..., :3] /= 100
pspi_nn_predition = nn_prediction['ctrl'][-1]
nn_baseline['exp'].append(exp_nn_prediction)
# # random_sequence
random_prediction = random_sequence()
exp_random_prediction = random_prediction['x']
exp_random_prediction[..., :3] /= 100
pspi_random_prediction = random_prediction['ctrl'][-1]
random_baseline['exp'].append(exp_random_prediction)
if try_idx == 0:
nn_baseline['pspi'].append(pspi_nn_predition)
random_baseline['pspi'].append(pspi_random_prediction)
exp_groundtruth = sample['x']
_pspi_groundtruth = torch.load(os.path.join(gt_pspi_path, f"test_ctrl_{idx}.pt"))
pspi_groundtruth = [p[1] for p in _pspi_groundtruth]
# pspi_groundtruth = sample['ctrl'][-1]
gt['exp'].append(exp_groundtruth)
gt['pspi'].append(torch.tensor(pspi_groundtruth))
_stimuli = sample['ctrl'][-2]
stimuli.append(_stimuli)
# calculate_pain_metrics(exp_pred, exp_multiple, exp_gt, pspi_pred, pspi_gt, stimuli)
# backup the object
# torch.save(nn_baseline, os.path.join(output_path, "nn_baseline.pt"))
# torch.save(random_baseline, os.path.join(output_path, "random_baseline.pt"))
# torch.save(gt, os.path.join(output_path, "gt.pt"))
# torch.save(stimuli, os.path.join(output_path, "stimuli.pt"))
# nn_baseline = torch.load(os.path.join(output_path, "nn_baseline.pt"))
# random_baseline = torch.load(os.path.join(output_path, "random_baseline.pt"))
# gt = torch.load(os.path.join(output_path, "gt.pt"))
# stimuli = torch.load(os.path.join(output_path, "stimuli.pt"))
from einops import rearrange
one_try_lenght = len(new_val_list)
nn_multiple_exp = [torch.stack(nn_baseline['exp'][i:i+one_try_lenght]) for i in range(0, len(nn_baseline['exp']), one_try_lenght)]
nn_multiple_exp = torch.stack(nn_multiple_exp)
# print(nn_multiple_exp.shape)
# print(nn_multiple_exp[0][0][0][:10])
# print(nn_multiple_exp[1][0][0][:10])
random_multiple_exp = [torch.stack(random_baseline['exp'][i:i+one_try_lenght]) for i in range(0, len(random_baseline['exp']), one_try_lenght)]
random_multiple_exp = torch.stack(random_multiple_exp)
# print(random_multiple_exp.shape)
# print(random_multiple_exp[0][0][0][:10])
# print(random_multiple_exp[1][0][0][:10])
# print("calculating nn metrics")
# nn_metrics = calculate_pain_metrics(
# torch.stack(nn_baseline['exp'][:len(new_val_list)]),
# nn_multiple_exp,
# torch.stack(gt['exp']),
# torch.stack(nn_baseline['pspi']),
# torch.stack(gt['pspi'])[...,:608],
# torch.stack(stimuli),
# )
print("calculating random metrics")
random_metrics = calculate_pain_metrics(
torch.stack(random_baseline['exp'][:len(new_val_list)]),
random_multiple_exp,
torch.stack(gt['exp']),
torch.stack(random_baseline['pspi']),
torch.stack(gt['pspi'])[...,:608],
torch.stack(stimuli),
)