-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonline_run.py
251 lines (192 loc) · 7.35 KB
/
online_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import threading
import time
import asyncio
from lightning import Trainer
import numpy as np
from collections import deque
import torch
import yaml
from diffusion.elucidated_for_video import ElucidatedDiffusion
from diffusion.module.utils.biovid import BioVidDM
from inferno_package.render_from_exp import decode_latent_to_image
def load_model(conf_file) -> ElucidatedDiffusion:
with open(conf_file, "r") as f:
conf = yaml.safe_load(f)
best_checkpoint = conf["BEST_CKPT"]
model = ElucidatedDiffusion.from_conf(conf_file)
trainer = Trainer(
max_epochs=100,
accelerator="gpu",
devices=1,
fast_dev_run=1,
logger=False,
)
biovid = BioVidDM.from_conf(conf_file)
biovid.test_max_length = 64
trainer.test(model, datamodule=biovid, ckpt_path=best_checkpoint)
model = model.eval()
model = model.cuda()
return model
# model = load_model("configure/sample_config.yml")
model = load_model("configure/scale_jawpose_window_32.yml")
default_face = 'default_face/'
# Initialize shared variables
current_stimuli = {
'pain_stimuli': 30,
'pain_configuration': 5,
'emotion_status': 5,
'scripted_pain_stimuli': None
}
past_frames = None
current_frame = None
stop_threads_flag = False
scheduling_matrix = None
sr = 30 # Sampling rate in Hz
generate_fps = 30 # Frame generation rate in Hz
window_size = 32
frame_queue = deque()
stimuli_queue = deque(maxlen=window_size) # Fixed size queue
def stimuli_sampling_loop():
global stop_threads_flag
while not stop_threads_flag:
# Sample current stimuli values
stimuli_sample = current_stimuli.copy()
# print(f"Stimuli sampling loop: {stimuli_sample['pain_stimuli']}, {stimuli_sample['pain_configuration']}, {stimuli_sample['emotion_status']}")
# Append to stimuli_queue
stimuli_queue.append(stimuli_sample)
# Sleep for sampling interval
time.sleep(1.0 / sr)
def model_loop():
global stop_threads_flag
target_interval = 1.0 / generate_fps
while not stop_threads_flag:
stimuli_values = list(stimuli_queue)
start = time.time()
frames = generate_frames(stimuli_values)
prediction_time = time.time() - start
frame_interval = prediction_time / len(frames)
# cap the prediction rate to 30fps by sleeping
if frame_interval < target_interval:
time.sleep((target_interval - frame_interval)*len(frames))
frame_interval = target_interval
for frame in frames:
frame_queue.append((frame, frame_interval))
def generate_frames(stimuli_values):
# construct ctrl tensor
if len(stimuli_values) < window_size:
return [np.zeros((480, 640, 3), dtype=np.uint8) for _ in range(window_size)]
emotion_list = [stimuli['emotion_status'] for stimuli in stimuli_values]
pain_config = [stimuli['pain_configuration'] for stimuli in stimuli_values]
pain_stimuli_list = [stimuli['pain_stimuli'] for stimuli in stimuli_values]
[pain_stimuli_list, pain_config, emotion_list] = [torch.tensor(x).float().unsqueeze(0) for x in [pain_stimuli_list, pain_config, emotion_list]]
[pain_stimuli_list, pain_config, emotion_list] = [x.cuda() for x in [pain_stimuli_list, pain_config, emotion_list]]
ctrl = [pain_stimuli_list, pain_config, emotion_list]
# define guide
guide = [0.25, 0.5, 1.0]
global past_frames
prediction_tensor = model.sample_a_chunk(ctrl, guide, past_frames)
past_frames = prediction_tensor.detach().clone()
# print(prediction_tensor.shape)
render_frames = decode_latent_to_image(default_face, prediction_tensor, render=False, save_frame=False)
# scale the frame up to 640x640
render_frames = [np.array(frame) for frame in render_frames]
render_frames = [np.repeat(np.repeat(frame, 2, axis=0), 2, axis=1) for frame in render_frames]
return render_frames
def display_loop():
global current_frame, stop_threads_flag
while not stop_threads_flag:
if frame_queue:
frame, frame_interval = frame_queue.popleft()
current_frame = frame
time.sleep(frame_interval)
else:
time.sleep(0.01)
def get_frame():
return current_frame
# Global variable to keep track of the decay thread
decay_thread = None
def update_pain_stimuli(pain_stimuli):
current_stimuli['pain_stimuli'] = pain_stimuli
async def decay_pain_stimuli():
start_value = current_stimuli['pain_stimuli']
original_value = 30
duration = 5 # Duration in seconds
steps = 50
step_delay = duration / steps
step_value = (start_value - original_value) / steps
for _ in range(steps):
await asyncio.sleep(step_delay)
start_value -= step_value
if start_value < original_value:
start_value = original_value
current_stimuli['pain_stimuli'] = start_value
yield start_value # Update the slider in the UI
def update_other_stimuli(pain_configuration, emotion_status):
current_stimuli['pain_configuration'] = pain_configuration
emotion_map = {
"Anger": 0,
"Contempt": 1,
"Disgust": 2,
"Fear": 3,
"Happiness": 4,
"Neutral": 5,
"Sadness": 6,
"Surprise": 7
}
current_stimuli['emotion_status'] = emotion_map[emotion_status]
# Start threads
stimuli_thread = threading.Thread(target=stimuli_sampling_loop)
model_thread = threading.Thread(target=model_loop)
display_thread = threading.Thread(target=display_loop)
stimuli_thread.start()
model_thread.start()
display_thread.start()
with gr.Blocks() as demo:
gr.HTML('''
<h1 class="title is-1 publication-title">PainDiffusion: Can robot express pain?</h1>
''')
with gr.Row():
pain_stimuli_slider = gr.Slider(
30, 60, value=30, label="Heat Stimuli", step=0.1, elem_id="pain_stimuli_slider"
)
pain_configuration_slider = gr.Slider(5, 11, value=5, label="Pain Configuration", step=0.1)
emotion_status_radio = gr.Radio(
choices=[
"Anger", "Contempt", "Disgust", "Fear",
"Happiness", "Neutral", "Sadness", "Surprise"
],
value="Neutral",
label="Emotion Status"
)
# Update pain_stimuli in real-time as the slider moves
pain_stimuli_slider.input(
fn=update_pain_stimuli,
inputs=pain_stimuli_slider,
outputs=None
)
# Start decay when the slider is released
pain_stimuli_slider.release(
fn=decay_pain_stimuli,
inputs=None,
outputs=pain_stimuli_slider # Update the slider value in the UI
)
# Update other stimuli when their sliders change
pain_configuration_slider.change(
fn=update_other_stimuli,
inputs=[pain_configuration_slider, emotion_status_radio],
outputs=None
)
emotion_status_radio.change(
fn=update_other_stimuli,
inputs=[pain_configuration_slider, emotion_status_radio],
outputs=None
)
frame_display = gr.Image(label="Current Frame")
def update_frame():
while True:
if current_frame is not None:
yield current_frame
time.sleep(0.01)
demo.load(fn=update_frame, inputs=[], outputs=frame_display)
demo.launch()