diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 21702c5a6b..51ef84df97 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -267,7 +267,7 @@ jobs: echo "AUTODOC_BINDER_ENV_GH_BRANCH=${AUTODOC_BINDER_ENV_GH_BRANCH}" >> $GITHUB_ENV echo "AUTODOC_NOTEBOOKS_REPO_URL=${AUTODOC_NOTEBOOKS_REPO_URL}" >> $GITHUB_ENV echo "AUTODOC_NOTEBOOKS_BRANCH=${AUTODOC_NOTEBOOKS_BRANCH}" >> $GITHUB_ENV - # check computed variables + # check computed variables echo "Binder env: ${AUTODOC_BINDER_ENV_GH_REPO_NAME}/${AUTODOC_BINDER_ENV_GH_BRANCH}" echo "Notebooks source: ${AUTODOC_NOTEBOOKS_REPO_URL}/tree/${AUTODOC_NOTEBOOKS_BRANCH}" diff --git a/README.md b/README.md index 9210d5df7f..b712235776 100644 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ pip install scikit-decide[all] ``` For more details, see the [online documentation](https://airbus.github.io/scikit-decide/install). -## Documentation +## Documentation The latest documentation is available [online](https://airbus.github.io/scikit-decide). diff --git a/docs/contribute.md b/docs/contribute.md index 3fc55ac104..07cfabb48d 100644 --- a/docs/contribute.md +++ b/docs/contribute.md @@ -171,7 +171,7 @@ Then generate and serve locally the documentation with: poetry run yarn docs:dev ``` -NB: The above command will call  `python docs/autodoc.py` hence the use of `poetry run`. +NB: The above command will call `python docs/autodoc.py` hence the use of `poetry run`. Open your web browser to access the documentation (by default on http://localhost:8080/scikit-decide/). diff --git a/notebooks/11_maze_tuto.ipynb b/notebooks/11_maze_tuto.ipynb index 1bec597b68..f112e29510 100644 --- a/notebooks/11_maze_tuto.ipynb +++ b/notebooks/11_maze_tuto.ipynb @@ -665,7 +665,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Conclusion" + "## Conclusion" ] }, { diff --git a/notebooks/12_gym_tuto.ipynb b/notebooks/12_gym_tuto.ipynb index 9ff44230bb..9e0241cbf6 100644 --- a/notebooks/12_gym_tuto.ipynb +++ b/notebooks/12_gym_tuto.ipynb @@ -85,7 +85,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## About Continuous Mountain Car problem" + "## About Continuous Mountain Car problem" ] }, { diff --git a/notebooks/14_benchmarking_tuto.ipynb b/notebooks/14_benchmarking_tuto.ipynb index fbc7b60c71..29a1eb347d 100644 --- a/notebooks/14_benchmarking_tuto.ipynb +++ b/notebooks/14_benchmarking_tuto.ipynb @@ -151,7 +151,7 @@ "Now it is time to run the benchmark. \n", "\n", "Some remarks: \n", - "- By default, one free CPU will be allocated for each solver trial, but you can customize allocated CPUs/GPUs using the  `resources_per_trial` argument. \n", + "- By default, one free CPU will be allocated for each solver trial, but you can customize allocated CPUs/GPUs using the `resources_per_trial` argument. \n", "- Some solvers will fail for various reasons (e.g. missing required arguments, as logged in induvidual error.txt files under ~/ray_results arborescence), but this will not stop the benchmarck from running the other ones. So do not be afraid of the numerous red lines below!\n", "- You could fix most of the failing solvers by specifying the missing arguments thanks to `solver_args` option as shown below for `StableBaseline`.\n", "- To avoid a very long output, we use here a progress reporter adapted to Jupyter notebooks that will update in place the status of different jobs. As a side effect, error messages of failing solvers may be overwritten. But you can still have a look to the error files afterwards (see \"error file\" column in the second table below)." diff --git a/notebooks/maze_utils.py b/notebooks/maze_utils.py index 8594be73db..60495e5178 100644 --- a/notebooks/maze_utils.py +++ b/notebooks/maze_utils.py @@ -66,7 +66,7 @@ def generate_random_maze(width: int, height: int) -> "Maze": # pick a cell current_cell = stack.pop() i, j = current_cell - #  find unvisited neighbours + # find unvisited neighbours neighbours = [(i + di, j + dj) for (di, dj) in _deltas_neighbour] neighbours = [ (i, j) @@ -74,7 +74,7 @@ def generate_random_maze(width: int, height: int) -> "Maze": if (i > 0) and (i < height) and (j > 0) and (j < width) ] unvisited_neighbours = [cell for cell in neighbours if cell not in visited] - #  remove a wall towards an unvisited cell + # remove a wall towards an unvisited cell if len(unvisited_neighbours) > 0: stack.append(current_cell) next_cell = random.choice(unvisited_neighbours)