-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnaive-learner-IPD.py
36 lines (28 loc) · 953 Bytes
/
naive-learner-IPD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import torch
from torch.autograd import Variable
y1 = Variable(torch.zeros(5,1),requires_grad = True)
y2 = Variable(torch.zeros(5,1),requires_grad = True)
r1 = Variable(torch.Tensor([-1,-3,0,-2]))
r2 = Variable(torch.Tensor([-1,0,-3,-2]))
I = Variable(torch.eye(4))
gamma = 0.6
delta = 0.1
for epoch in range(5000):
x1 = torch.sigmoid(y1)
x2 = torch.sigmoid(y2)
P = torch.cat((x1*x2,x1*(1-x2),(1-x1)*x2,(1-x1)*(1-x2)),1)
Zinv = torch.inverse(I-gamma*P[1:,:])
V1 = torch.matmul(torch.matmul(P[0,:],Zinv),r1)
V2 = torch.matmul(torch.matmul(P[0,:],Zinv),r2)
V1.backward(retain_graph=True)
y1.data += delta*y1.grad.data
#print("x1.grad.data ",x1.grad.data)
y2.grad.data.zero_()
V2.backward()
y2.data += delta*y2.grad.data
#print("x2.grad.data ",x2.grad.data)
y1.grad.data.zero_()
y2.grad.data.zero_()
#print("Epoch: {}".format(epoch))
# Have to ensure that parameters represent probabilities - stay between 0 and 1