-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlola-IMP.py
43 lines (33 loc) · 1.61 KB
/
lola-IMP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import torch
from torch.autograd import Variable
dtype = torch.cuda.FloatTensor
y1 = Variable(torch.zeros(5,1).type(dtype),requires_grad = True)
y2 = Variable(torch.zeros(5,1).type(dtype),requires_grad = True)
#y1.register_hook(print)
#y2.register_hook(print)
#y1.retain_grad()
#y2.retain_grad()
r1 = Variable(torch.Tensor([-1, 1, 1, -1]).type(dtype))
r2 = Variable(torch.Tensor([1, -1, -1, 1]).type(dtype))
I = Variable(torch.eye(4).type(dtype))
gamma = Variable(torch.Tensor([0.9]).type(dtype))
delta = Variable(torch.Tensor([0.1]).type(dtype))
eta = Variable(torch.Tensor([1]).type(dtype))
for epoch in range(1000):
x1 = torch.sigmoid(y1)
x2 = torch.sigmoid(y2)
P = torch.cat((x1*x2,x1*(1-x2),(1-x1)*x2,(1-x1)*(1-x2)),1)
Zinv = torch.inverse(I-gamma*P[1:,:])
V1 = torch.matmul(torch.matmul(P[0,:],Zinv),r1)
V2 = torch.matmul(torch.matmul(P[0,:],Zinv),r2)
dV1 = torch.autograd.grad(V1,(y1,y2),create_graph = True)
dV2 = torch.autograd.grad(V2,(y1,y2),create_graph = True)
d2V2 = [torch.autograd.grad(dV2[1][i], y1, create_graph = True)[0] for i in range(y1.size(0))]
d2V1 = [torch.autograd.grad(dV1[0][i], y2, create_graph = True)[0] for i in range(y1.size(0))]
d2V2Tensor = torch.cat([d2V2[i] for i in range(y1.size(0))],1)
d2V1Tensor = torch.cat([d2V1[i] for i in range(y1.size(0))],1)
#y1.data += (delta*dV1[0] + delta*eta*torch.matmul(dV1[1].t(),d2V2Tensor).t()).data
#y2.data += (delta*dV2[1] + delta*eta*torch.matmul(dV2[0].t(),d2V1Tensor).t()).data
y1.data += (delta*dV1[0] + delta*eta*torch.matmul(d2V2Tensor,dV1[1])).data
y2.data += (delta*dV2[1] + delta*eta*torch.matmul(d2V1Tensor,dV2[0])).data