-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathavReturnIPD.py
41 lines (40 loc) · 1.14 KB
/
avReturnIPD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
def av_return(policy1,policy2,r1arr = [-1,-3,0,-2],r2arr = [-1,0,-3,-2],rollout_length=10000,num_rollout=100,verbose=False):
policy1 = policy1.data.cpu().numpy().tolist()
policy2 = policy2.data.cpu().numpy().tolist()
reward = []
for _ in range(num_rollout):
s = [0,0]
s[0] = np.random.choice([0,1],p = [policy1[0][0],1-policy1[0][0]])
s[1] = np.random.choice([0,1],p = [policy2[0][0],1-policy2[0][0]])
r1 = 0
r2 = 0
if verbose:
print("Initial states are {}".format(s))
for i in range(rollout_length):
if s[0]==0 and s[1]==0:
a = 1
elif s[0]==0 and s[1]==1:
a = 2
if verbose:
print("Coop/Def")
elif s[0]==1 and s[1]==0:
a = 3
if verbose:
print("Def/Coop")
else:
a = 4
if verbose:
print("Both Defected!")
r1 = r1 + r1arr[a-1]
r2 = r2 + r2arr[a-1]
s[0] = np.random.choice([0,1],p = [policy1[a][0],1-policy1[a][0]])
s[1] = np.random.choice([0,1],p = [policy2[a][0],1-policy2[a][0]])
#print(s)
r1 = r1/rollout_length
r2 = r2/rollout_length
reward.append([r1,r2])
reward = np.asarray(reward)
r1 = np.mean(reward[:,0])
r2 = np.mean(reward[:,1])
return r1,r2