forked from steffenoppel/TRAL_IPM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTRAL_IPM_result_summaries_Ntot.r
354 lines (280 loc) · 14.5 KB
/
TRAL_IPM_result_summaries_Ntot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
##########################################################################
#
# TRISTAN ALBATROSS INTEGRATED POPULATION MODEL 2001-2018
#
##########################################################################
# based on output created in TRAL_IPM_v3.r
# includes JAGS output from 4 scenarios of AYNA population trajectory
# changed on 3 April 2020 to adjust for reduced parameters monitored
# changed on 22 April to incorporate 3 scenarios
# updated 15 January 2021 to include new output from m-array
# split into new file on 21 January 2021 to include new output for total population size
# updated 9 August 2021 to include final output in different form
# updated 4 Oct 2021 to include Figure S2 (showing no difference in effort formulation)
library(tidyverse)
library(jagsUI)
library(data.table)
library(runjags)
#library(nimble)
filter<-dplyr::filter
select<-dplyr::select
library(grid)
library(magick)
#########################################################################
# LOAD MODEL OUTPUT FROM IPMs
#########################################################################
setwd("C:\\STEFFEN\\RSPB\\UKOT\\Gough\\ANALYSIS\\PopulationModel\\TRAL_IPM")
#load("TRAL_IPM_output_2020.RData")
#load("TRAL_IPM_output_v5_Ntot_agerecruit.RData")
load("TRAL_IPM_output_FINAL.RData")
imgTRAL<-image_read("C:\\STEFFEN\\RSPB\\UKOT\\Gough\\PR_Comms\\Icons\\alby 4.jpg") %>% image_transparent("white", fuzz=5)
TRALicon <- rasterGrob(imgTRAL, interpolate=TRUE)
#########################################################################
# PRODUCE OUTPUT TABLES THAT COMBINE ALL 3 SCENARIOS
#########################################################################
### predictions created in TRAL_IPM_FINAL.r
## write output into file ##
export<-predictions %>%
mutate(Year=c(
rep(NA,8), ## for mean phi, p, and growth rates
seq(2004,2021,1), ## for N.tot
rep(seq(2022,2051,1),each=3), ## for Ntot.f with 3 scenarios
#seq(2004,2020,1), ## for lambda
rep(seq(1979,2020,1), 2), ## for phi.ad and phi.juv
seq(2004,2021,1) ## for ann.fec
)) %>% ## for deviance and agebeta
mutate(demographic=parameter) %>%
mutate(demographic=ifelse(grepl("fec",parameter,perl=T,ignore.case = T)==T,"fecundity",demographic))%>%
mutate(demographic=ifelse(grepl("phi",parameter,perl=T,ignore.case = T)==T,"survival",demographic))%>%
mutate(demographic=ifelse(grepl("Ntot",parameter,perl=T,ignore.case = T)==T,"pop.size",demographic)) %>%
mutate(demographic=ifelse(grepl("growth",parameter,perl=T,ignore.case = T)==T,"growth.rate",demographic)) %>%
mutate(demographic=ifelse(grepl("agebeta",parameter,perl=T,ignore.case = T)==T,"agebeta",demographic)) %>%
rename(Rhat=psrf) %>%
arrange(demographic,Year)
tail(export)
hist(export$Rhat)
hist(export$SSeff)
#write.table(export,"TRAL_Gough_IPM_estimates_2021_FINAL.csv", sep=",", row.names=F)
#########################################################################
# SUMMARIES FOR TEXT
#########################################################################
## NEED TO DO: base these regressions on IPM estimates
### change in breeding pop size
PROD.DAT$R[PROD.DAT$R<1000]<-NA
summary(lm(R~Year,data=PROD.DAT))
range(PROD.DAT$R, na.rm=T)
##change in breeding success
PROD.DAT$J[is.na(PROD.DAT$R)]<-NA
PROD.DAT$success<-PROD.DAT$J/PROD.DAT$R
#summary(lm(success~Year,data=PROD.DAT))
bsout<-export %>% filter(demographic=="fecundity") %>% filter(!is.na(Year)) %>%
select(Year,Median,Lower95,Upper95)
summary(lm(Median~Year,data=bsout))
range(bsout$Median, na.rm=T)
#########################################################################
# PRODUCE TABLE 1 THAT SUMMARISES DEMOGRAPHIC RATES
#########################################################################
TABLE1<-export %>%
filter(!grepl("Ntot",parameter)) %>%
filter(parameter %in% c("fut.growth.rate[1]",
"fut.growth.rate[2]",
"fut.growth.rate[3]",
"mean.fec",
#"mean.propensity",
#"mean.recruit",
"pop.growth.rate",
"mean.phi.ad",
"mean.phi.juv" ))
#write.table(TABLE1,"TRAL_demographic_estimates_2021.csv", sep=",", row.names=F)
#########################################################################
# PRODUCE OUTPUT GRAPH THAT SHOWS ESTIMATES FOR POPULATION TREND
#########################################################################
## INCLUDED DIFFERENT SCENARIOS ON 22 APRIL 2020
## scenario 1: projection with no changes in demography
## scenario 2: successful mouse eradication in 2021 - fecundity doubles
## scenario 3: increasing mouse impacts on adult survival (adult survival decreases by 10%)
## PREPARE PLOTTING DATAFRAME
plot1_df <- export %>%
rename(lcl=Lower95,ucl=Upper95) %>%
filter(grepl("Ntot",parameter,perl=T,ignore.case = T)) %>%
arrange(Year) %>%
mutate(Scenario="past, and no future change") %>%
mutate(Scenario=if_else(grepl("f\\[2",parameter,perl=T,ignore.case = T), "after successful mouse eradication",if_else(grepl("f\\[3",parameter,perl=T,ignore.case = T),"unsuccessful mouse eradication and worsening impacts",Scenario))) %>%
mutate(ucl=if_else(ucl>15000,15000,ucl)) %>%
filter(!(Median<500 & Year<2020)) #%>%
#mutate(Median=ifelse(Year>2021 & Scenario=="status quo",NA,Median)) %>%
## CREATE PLOT FOR POP TREND AND SAVE AS PDF
TRAL.pop$line="observed trend"
ggplot(plot1_df) +
geom_line(aes(y=Median*2, x=Year, colour=Scenario), size=1)+ #
geom_ribbon(aes(x=Year, ymin=lcl*2,ymax=ucl*2, fill=Scenario),alpha=0.3)+ #
#scale_color_manual(values=c('#4393c3','#d6604d','#b2182b')) +
#scale_fill_manual(values=c('#4393c3','#d6604d','#b2182b')) +
scale_fill_viridis_d(alpha=0.3,begin=0,end=0.98,direction=1) +
scale_color_viridis_d(alpha=1,begin=0,end=0.98,direction=1) +
## add the breeding pair count data
geom_point(data=TRAL.pop[TRAL.pop$tot>500 & TRAL.pop$tot<2395,],aes(y=tot*2, x=Year),col="black", size=2.5)+
geom_smooth(data=TRAL.pop[TRAL.pop$tot>500 & TRAL.pop$tot<2395,],aes(y=tot*2, x=Year, lty=line),method="lm",se=T,col="grey12", size=1)+
#ylab() +
#xlab("Year") +
scale_y_continuous(breaks=seq(0,18000,2000), limits=c(0,20000),expand = c(0, 0))+
scale_x_continuous(breaks=seq(2005,2050,5), limits=c(2004,2050))+
#scale_linetype_manual(name="Breeding population",label="observed trend") +
labs(x="Year", y="\nTristan Albatross Population Size (Individuals)\n",
col="Total population scenario",
fill="Total population scenario",
linetype="Breeding population") +
### add the bird icons
annotation_custom(TRALicon, xmin=2045, xmax=2050, ymin=16000, ymax=20000) +
theme(panel.background=element_rect(fill="white", colour="black"),
axis.text=element_text(size=18, color="black"),
axis.title=element_text(size=20),
legend.text=element_text(size=14),
legend.title = element_text(size=16),
legend.position=c(0.26,0.82),
panel.grid.major = element_line(size=.1, color="grey94"),
#panel.grid.major.y = element_line(size=.1, color="grey37"),
#panel.grid.major.x = element_blank(),
#panel.border = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(fill=NA, colour = "black"))
ggsave("TRAL_IPM_pop_trend_Gough_2004_2050_Ntot.jpg", width=14, height=8)
ggsave("C:\\STEFFEN\\MANUSCRIPTS\\in_prep\\TRAL_IPM\\Fig1.jpg", width=14, height=8)
#########################################################################
# CALCULATE BENEFIT OF ERADICATION
#########################################################################
### MAXIMUM BENEFIT ###
plot1_df %>% filter(Year==2050) %>%
mutate(benefit=max(Median)/min(Median),
benefit.lcl=max(lcl)/min(lcl),
benefit.ucl=max(ucl)/min(ucl))
### MINIMUM BENEFIT ###
plot1_df %>% filter(Year==2050) %>%
mutate(benefit=max(Median)/median(Median),
benefit.lcl=max(lcl)/median(lcl),
benefit.ucl=max(ucl)/median(ucl))
### BENEFIT EVEN WITH FAILURE ###
plot1_df %>% filter(Year==2050) %>%
mutate(benefit=median(Median)/min(Median),
benefit.lcl=median(lcl)/min(lcl),
benefit.ucl=median(ucl)/min(ucl))
## ALTERNATIVE PLOT WITH TWO SEPARATE AXES
#
# ggplot(plot1_df) +
# geom_line(aes(y=Median*2, x=Year, colour=factor(Scenario)), size=1) + #
# geom_ribbon(aes(x=Year, ymin=lcl*2,ymax=ucl*2, fill=Scenario),alpha=0.3)+ #
# geom_point(data=TRAL.pop[TRAL.pop$tot>500 & TRAL.pop$tot<2395,],aes(y=tot*5, x=Year),col="firebrick", size=2.5)+
# geom_point(data=TRAL.pop[TRAL.pop$Year %in% c(2001,2011),],aes(y=tot*5, x=Year),col="salmon", size=2)+
# ylab("\nGlobal Tristan Albatross Population (Individuals)") +
# xlab("Year") +
# labs(color = "Scenario", fill = "Scenario")+
# scale_y_continuous(breaks=seq(0,27000,2000), limits=c(0,27000),
# sec.axis = sec_axis(~ . / 5,
# name = "Number of Breeding Pairs on Gough\n"))+
# scale_x_continuous(breaks=seq(2001,2050,5))+
# theme_bw()+
# theme(
# axis.text=element_text(size=16, color="black"),
# axis.title=element_text(size=18),
# legend.text=element_text(size=14),
# legend.title = element_text(size=16),
# legend.position=c(0.1,0.9),
# #panel.grid.major = element_blank(),
# panel.grid.minor = element_blank()#,
# #panel.border = element_blank()
# )
#########################################################################
# PRODUCE OUTPUT GRAPH THAT SHOWS ESTIMATES FOR PRODUCTIVITY
#########################################################################
bsout<-bsout %>% filter(Year<2021)
## CREATE PLOT FOR POP TREND AND SAVE AS PDF
ggplot(bsout) +
geom_point(aes(y=Median, x=Year), size=2, colour="firebrick")+ #
geom_errorbar(aes(ymin=Lower95, ymax=Upper95, x=Year), width=0.2)+ #
geom_smooth(aes(y=Median, x=Year),method="lm",se=T,col="grey12", size=1)+
ylab("\nBreeding success of Tristan Albatross\n") +
xlab("Year") +
scale_y_continuous(breaks=seq(0,0.8,0.2), limits=c(0,0.8))+
scale_x_continuous(breaks=seq(2004,2020,2), limits=c(2004,2020))+
### add the bird icons
#annotation_custom(TRALicon, xmin=2045, xmax=2050, ymin=16000, ymax=20000) +
theme(panel.background=element_rect(fill="white", colour="black"),
axis.text=element_text(size=18, color="black"),
axis.title=element_text(size=20),
legend.text=element_text(size=14),
legend.title = element_text(size=16),
legend.position=c(0.26,0.9),
#panel.grid.major = element_blank(),
#panel.border = element_blank(),
panel.grid.minor = element_blank())
ggsave("C:\\STEFFEN\\MANUSCRIPTS\\in_prep\\TRAL_IPM\\FigS3.jpg", width=14, height=8)
#########################################################################
# PRODUCE SUPPLEMENTARY FIGURE COMPARING CONT EFFORT AND TWO-INTERCEPT MODEL
#########################################################################
### load the model output from constant effort predictions
load("C:\\STEFFEN\\RSPB\\UKOT\\Gough\\ANALYSIS\\PopulationModel\\oldTRAL_IPM\\TRAL_IPM_output_FINAL_conteffort.RData")
## write output into file ##
exportconteff<-predictions %>%
mutate(Year=c(
rep(NA,8), ## for mean phi, p, and growth rates
seq(2004,2021,1), ## for N.tot
rep(seq(2022,2051,1),each=3), ## for Ntot.f with 3 scenarios
#seq(2004,2020,1), ## for lambda
rep(seq(1979,2020,1), 2), ## for phi.ad and phi.juv
seq(2004,2021,1) ## for ann.fec
)) %>% ## for deviance and agebeta
mutate(demographic=parameter) %>%
mutate(demographic=ifelse(grepl("fec",parameter,perl=T,ignore.case = T)==T,"fecundity",demographic))%>%
mutate(demographic=ifelse(grepl("phi",parameter,perl=T,ignore.case = T)==T,"survival",demographic))%>%
mutate(demographic=ifelse(grepl("Ntot",parameter,perl=T,ignore.case = T)==T,"pop.size",demographic)) %>%
mutate(demographic=ifelse(grepl("growth",parameter,perl=T,ignore.case = T)==T,"growth.rate",demographic)) %>%
mutate(demographic=ifelse(grepl("agebeta",parameter,perl=T,ignore.case = T)==T,"agebeta",demographic)) %>%
arrange(demographic,Year)
TABLE1coneff<-exportconteff %>%
filter(!grepl("Ntot",parameter)) %>%
filter(parameter %in% c("fut.growth.rate[1]",
"fut.growth.rate[2]",
"fut.growth.rate[3]",
"mean.fec",
"pop.growth.rate",
"mean.phi.ad",
"mean.phi.juv" )) %>%
mutate(Model="continuous observation effort")
FIGS2DATA<-TABLE1 %>%
mutate(Model="categorical observation effort") %>%
rename(lcl=Lower95, ucl=Upper95) %>%
bind_rows(TABLE1coneff) %>%
select(Model, parameter,Median, lcl,ucl) %>%
mutate(plotorder=rep(c(3,4,5,6,7,1,2),2)) %>%
mutate(plotorder=if_else(Model=="categorical observation effort",plotorder-0.2, plotorder+0.2)) %>%
arrange(plotorder) %>%
mutate(parameter=rep(c("adult survival",
"juvenile survival",
"breeding success",
"pop.growth (past)",
"pop.growth (future) - no change",
"pop.growth (future) - eradication",
"pop.growth (future) - worse mice"),each=2))
## CREATE PLOT FOR COMPARISON OF PARAMETER ESTIMATES
ggplot(FIGS2DATA) +
geom_point(aes(y=Median, x=plotorder, colour=Model), size=1)+ #
geom_errorbar(aes(ymin=lcl, ymax=ucl, x=plotorder, colour=Model), width=0.1)+ #
ylab("\nParameter estimate\n") +
xlab("Integrated population model parameter") +
scale_y_continuous(breaks=seq(0.2,1.1,0.1), limits=c(0.2,1.1))+
scale_x_continuous(breaks=seq(1,7,1), limits=c(0,8), labels=FIGS2DATA$parameter[seq(1,13,2)])+
### add the bird icons
#annotation_custom(TRALicon, xmin=2045, xmax=2050, ymin=16000, ymax=20000) +
theme(panel.background=element_rect(fill="white", colour="black"),
axis.text.y=element_text(size=18, color="black"),
axis.text.x=element_text(size=14, color="black", angle=45,hjust = 1),
axis.title=element_text(size=20),
legend.text=element_text(size=14),
legend.title=element_text(size=16),
legend.key=element_blank(),
#legend.box.background = = element_blank(),
legend.position=c(0.80,0.20),
#panel.grid.major = element_blank(),
#panel.border = element_blank(),
panel.grid.minor = element_blank())
ggsave("C:\\STEFFEN\\MANUSCRIPTS\\in_prep\\TRAL_IPM\\FigS2.jpg", width=14, height=8)