-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
55 lines (48 loc) · 1.71 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
from PIL import Image
import numpy as np
from keras.models import load_model
import tensorflow as tf
@st.cache_resource
def load_model():
model=tf.keras.models.load_model('mymodel2.h5')
return model
with st.spinner('Model is being loaded..'):
model=load_model()
st.write("""
# AI Image Classification
"""
)
with open('style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
file = st.file_uploader('Please upload an image', type=["jpg", "png", "jpeg", "webm"],)
import cv2
from PIL import Image, ImageOps
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
st.set_option('deprecation.showfileUploaderEncoding', False)
def import_and_predict(image_data, model):
size = (224,224)
image = ImageOps.fit(image_data, size)
img = np.asarray(image)
img=img/255
img=np.expand_dims(img,[0])
prediction = model.predict(img)
return prediction
if file is None:
st.text('Please upload an image file')
else:
image = Image.open(file)
image = image.convert("RGB")
st.image(image, use_column_width=True)
try:
predictions = import_and_predict(image, model)
score = tf.nn.softmax(predictions[0])
predictions = np.argmax(predictions, axis = 1)
if(predictions == 0):
st.write('<p class = "prediction">The image is most likely an AI Generated Image</p>', unsafe_allow_html=True)
else:
st.write('<p class = "prediction">The image is most likely a Real Image</p>', unsafe_allow_html=True)
except Exception as e:
st.write(f'An error occurred during prediction')