This repository has been archived by the owner on Dec 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbehaviour.py
151 lines (128 loc) · 4.35 KB
/
behaviour.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import logging
from imlib.radial.misc import phase_unwrap
from imlib.array.math import calculate_gradient_1d
from movement.io.dlc import load_and_clean_dlc
from movement.position.angles import angle_from_points
from movement.movement.velocity import calculate_speed
from opendirection.combine.calculate_general import get_positions
def get_behaviour(
dlc_files,
real_length_to_pixel_conversion,
camera_hz,
options,
regex_columns_to_remove=["likelihood", "bodyparts"],
):
logging.info("Loading behavioural data")
behaviour_data = load_and_clean_dlc(
dlc_files, regex_remove_columns=regex_columns_to_remove
)
logging.info("Calculating behaviours")
behaviour_data = calculate_behaviours(
behaviour_data,
conversion_factor=real_length_to_pixel_conversion,
camera_hz=camera_hz,
hd_filter=options.ang_vel_filter_hd_filt_width,
velocity_filter=options.velocity_smooth_sigma,
local_ang_vel_deriv_window=options.ang_vel_local_derivative_window,
use_head_as_position_velocity=options.velocity_position_head,
)
return behaviour_data
def calculate_behaviours(
df,
conversion_factor=0.002,
camera_hz=40,
hd_filter=None,
velocity_filter=None,
local_ang_vel_deriv_window=0.2,
use_head_as_position_velocity=False,
):
num_behaviour_measurements = len(df.index)
df = speed(
df,
conversion_factor=conversion_factor,
camera_hz=camera_hz,
velocity_filter=velocity_filter,
use_head_as_position_velocity=use_head_as_position_velocity,
)
df = calculate_head_angle_velocity(
df,
camera_hz=camera_hz,
hd_filter=hd_filter,
local_ang_vel_deriv_window=local_ang_vel_deriv_window,
)
df = add_times(df, num_behaviour_measurements, camera_hz)
return df
def speed(
df,
conversion_factor=0.002,
camera_hz=40,
velocity_filter=None,
min_periods=1,
use_head_as_position_velocity=False,
):
pixel_per_frame_speed = conversion_factor * camera_hz
x, y = get_positions(
df, use_head_as_position=use_head_as_position_velocity
)
total_speed = calculate_speed(
x, y, conversion_factor=pixel_per_frame_speed,
)
# total_speed = calculate_speed(
# df["Back_x"].to_numpy().astype(float),
# df["Back_y"].to_numpy().astype(float),
# conversion_factor=pixel_per_frame_speed,
# )
df["total_speed"] = total_speed
if velocity_filter:
filter_frames = int(np.round(velocity_filter * camera_hz))
df["total_speed"] = (
df["total_speed"]
.rolling(filter_frames, center=True, min_periods=min_periods)
.median()
)
return df
def calculate_head_angle_velocity(
df,
camera_hz=40,
hd_filter=None,
local_ang_vel_deriv_window=0.2,
min_periods=1,
):
ear_positions = np.empty((4, len(df)))
ear_positions[0, :] = df["Hear_L_x"].to_numpy().astype(float)
ear_positions[1, :] = df["Hear_L_y"].to_numpy().astype(float)
ear_positions[2, :] = df["Hear_R_x"].to_numpy().astype(float)
ear_positions[3, :] = df["Hear_R_y"].to_numpy().astype(float)
df["absolute_head_angle"] = angle_from_points(ear_positions)
df["unwrapped_angle"] = phase_unwrap(df["absolute_head_angle"])
velocity_at_t0 = np.array(0) # to match length
angular_head_velocity = np.append(
velocity_at_t0, np.diff(df["unwrapped_angle"])
)
# convert to deg/s
# instantaneous (x(t) - x(t-1))
df["angular_head_velocity_instantaneous"] = (
angular_head_velocity * camera_hz
)
if hd_filter:
filter_frames = int(np.round(hd_filter * camera_hz))
df["unwrapped_angle"] = (
df["unwrapped_angle"]
.rolling(filter_frames, center=True, min_periods=min_periods)
.median()
)
# based on window
ang_vel_window = int(round(local_ang_vel_deriv_window * camera_hz))
df["angular_head_velocity"] = (
df["unwrapped_angle"]
.rolling(ang_vel_window, min_periods=1)
.apply(calculate_gradient_1d, raw=True)
* camera_hz
)
return df
def add_times(df, num_behaviour_measurements, camera_hz):
end_time = num_behaviour_measurements / camera_hz
time_range = np.arange(0, end_time, (1 / camera_hz))
df["time"] = time_range
return df