forked from rahulsaraf/Seasonal-trends-location-based
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper1.R
85 lines (54 loc) · 2.47 KB
/
helper1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
review <- read.csv("D:/UTDallasStudy/Coursework/Fall_15/Big_Data/project/data/categories_output.csv")
review <- na.omit(review)
colnames(review) <- c('category', 'category_id', 'count', 'season','year')
plot((review$season), review$review_no)
review_clust <- review[, c('date', 'review_no')]
review_clust_13 <- review[15:26, c('date','category', 'review_no')]
review_clust$date <- ts(as.Date(review_clust$date))
fit <- kmeans(review_clust, 7)
library(fpc)
plotcluster(review, fit$cluster)
clusplot(review, fit$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)
plot(review_clust_13[c("date", "review_no")])
plot(factor(review_clust_13$date), review_clust_13$review_no)
####################
library(cluster)
library(HSAUR)
data(pottery)
km <- kmeans(pottery,3)
dissE <- daisy(pottery)
dE2 <- dissE^2
sk2 <- silhouette(km$cl, dE2)
plot(sk2)
########################################################################
review <- read.csv("D:/UTDallasStudy/Coursework/Fall_15/Big_Data/project/data/categories_output.csv")
review <- na.omit(review)
colnames(review) <- c('category', 'category_id', 'count', 'season','year')
## Fall + restaurants analysis
rest_review <- review[which(review$category == 'restaurants'),]
rest_review <- rest_review[which(rest_review$season == 'fall'),]
plot(factor(rest_review$year), rest_review$count)
## season + restaurants analysis
rest_review <- review[which(review$category == 'restaurants'),]
#plot(factor(rest_review$season), rest_review$count)
x <- aggregate(rest_review$count, by=list(rest_review$season), FUN = mean)
plot(x$Group.1, x$x)
lines(x$Group.1, x$x)
## year + restaurants analysis
rest_review <- review[which(review$category == 'restaurants'),]
plot(factor(rest_review$year), mean(rest_review$count), type="n", xlab="Year",ylab="no_of_reviews")
########################################################################
review <- read.csv("D:/UTDallasStudy/Coursework/Fall_15/Big_Data/project/data/category-output-1.csv")
review <- na.omit(review)
colnames(review) <- c('category', 'category_id', 'count', 'season','month','year')
rest_review <- review[which(review$category == 'restaurants'),]
plot(factor(rest_review$month), rest_review$count)
View(review)
x <- aggregate(rest_review$count, by=list(rest_review$month), FUN = mean)
plot(x$Group.1, x$x)
lines(x$Group.1, x$x)
review_ext <- review[,c('category', 'count', 'season')]
plot(review_ext)
last <- data.frame()
plot(review_ext$category, review_ext$season,review_ext$count)
output-merged